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Image Anisotropy

“*Common problem in 3D medical image modalities (CT, MRI)

“*Voxel spacings along x, y, z dimensions are different. Usually spacing along z is different from
that along xy.

< Different spacing indicates different level of voxel correlations.

“*How to encode information of anisotropic images




Solutions

“*Re-slice to isotropic spacing
“»Introduce noise

“*May cause information loss

“*Hybrid 2D/3D convolution, CNN-RNN structure

+*Use the same kernel for all cases

“*May not adapt to variable slice spacing




Transfomer-based Network

“» Adapt to variable slice spacing

“»Computationally efficient

+»Consume fewer resources




Transtformer

“* A self-attention mechanism developed by Vaswani et al [1]1n 2017

“*The basic structure of many state-of-artnatural language processing models (eg: BERT)

[1]A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural
Information Processing Systems, 2017, pp. 5998-6008. 1, 2, 3
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“*Use queries and keys to compute weight vector that represents the slice correlations

“*Represent the new feature map as a weighted sum of itself and the feature maps of neighboring
slices

“*Use Positional Encoding (PE) to inject information about the sequence order
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Expermments

“*Lung cancer segmentation dataset from the Medical Segmentation Decathlon [2]

20,207 lung CT slices from 63 subjects.

“*Selected 2,027 positive slices and 1,890 negative slices.




Expermments

“*We re-sliced the original training set such that the voxel spacings along the three dimensions are
the same.

“*Train models on this isotropic dataset.

“*Test on the original dataset.

“»Compare the models’ ability to adapt to variable spacing.




Expermments

DICE SCORE COMPARISON (ORIGINAL DATA). DICE SCORE COMPARISON (RE-SLICED DATA)

Model Dice Score Model Dice Score  Performance Drop
TSFMUNet 0.8717 TSFMUNet 0.8674 0.0043
LSTMUNet 0.8573

LSTMUNet 0.8217 0.0356
3D U-Net 0.7744 3D U-Net 0.7261 0.0483
2D U-Net 0.7309 : :

Performance drop: 3D U-Net > LSTMUNet > TSFMUNet
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Segmentation results on models trained on the original dataset Segmentation results on models trained on re-sliced dataset




Conclusion

“*We have proposed a transformer-based network to deal with the anisotropy problem in 3D
medical image analysis.
“*Self-attention mechanism

“»Adapts to images with variable slice spacing

“*Experimental results with a lung cancer segmentation task reveal that our architecture
outperforms baseline models.
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