

Deep Superpixel Cut for Unsupervised Image Segmentation

Qinghong Lin^{1,2}, Weichan Zhong¹, JiangLin Lu^{1,2} Shenzhen University¹, China Kazan Federal University², Russia

Outline

- Background
- Motivation
- Method
- Experiment
- Conclusion

Background

- What is Image segmentation?
 - Dividing an image into regions, assigning a class to every pixel in the image

Fig 1. Image segmentation

Traditional method

- Over segmentation
 - Groups pixels into regions (superpixels) with similar characteristics (color, texture)
- Requirements
 - boundary adherence, compactness, effectively...

Fig 2. Over segmentation

- Related Work
 - Normalized Cut[1]

$$Ncut(A,B) = \frac{cut(A,B)}{assoc(A,V)} + \frac{cut(A,B)}{assoc(B,V)}$$

SLIC[2]:

• Drawbacks

Fig 3. SLIC algorithm

Hand crafted features

[1]Shi J, Malik J. Normalized cuts and image segmentation[J]. Departmental Papers (CIS), 2000: 107.
[2] Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. *IEEE transactions on pattern analysis and machine intelligence*, 2012, 34(11): 2274-2282.

- Semantic Segmentation
 - Assign a class label to each pixel

Fig 4. Semantic segmentation in Cityscapes dataset

- Requirements

• Pixel accuracy, mIoU...

- Related work
 - FCN[1]
 - U-Net[2]
- Drawback

Fig 6. U-Net
 Require the human annotation, which is hard to collect

[1]Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C] *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2015: 3431-3440.
[2] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C] *International Conference on Medical image computing and computer-assisted intervention*. Springer, Cham, 2015: 234-241.

Motivation

• Summary

Туре	Traditional Segmentation	Semantic Segmentation
Level	Superpixel	Pixel
Advantage	Fully explore image itself attributions (intensity, boundary)	Richer representation(semantic)
Disadvantage	Hand-crafted feature	Require Human annotation

Tab 1. Summary of those two type methods

- Inspiration
 - Can we make traditional methods and deep learning methods complementary?
 - Adopt Deep learning model for unsupervised image segmentation is worth thinking

Method

- We propose a deep learning architecture for unsupervised image segmentary which contains two stages:
- First, a **Superpixelwise Autoencoder (SuperAE)** is designed to learn the deep embedding and reconstruct a smoothed image, then the smoothed image is passed to generate superpixels.
- Second, we present a novel clustering algorithm called **Deep Superpixel Cut (DSC)**, which measures the deep similarity between superpixels and formulates image segmentation as a soft partitioning problem.

Fig 7. Proposed architecture

- Intuition
 - The real world image usually contain noise, which would affected the segmentation and needs to be smoothed
 - We observe that pixels within a superpixel are more continuous in color space

• SuperAE

- Fig 8. Superpixel example
- K-means loss, pixels => samples and Superpixel => center.
- SuperAE aim to minimize the variance of pixel features within a superpixel, thus smoothing the regions
 N: pixel number

$$\mathcal{L}_{r} = \|x - x^{R}\|^{2} + \lambda \sum_{i=1}^{N} \sum_{j=1}^{M} t_{ij} \|x_{i}^{R} - v_{j}\|^{2}$$
$$v_{j} = \frac{\sum_{i=1}^{N} t_{ij} x_{i}}{\sum_{i=1}^{N} t_{ij}}$$

N: pixel number M: Superpixel number x_i : original pixel i RGB vector. x_i^{R} : reconstructed pixel i RGB vector. v_j : Superpixel j RGB vector. t_{ij} : Indicator whether pixel i belong to superpixel j. λ : parameter

- Generate Pseudo Labels
 - Regard the segmentation as a pixelwise K-class classification problem.
 - Cross-entropy loss but lack of human annotation, so we use a strategy to generate pseudo-labels.

$$\mathcal{L}_{1} = -\sum_{n=1}^{N} \sum_{k=1}^{K} \underbrace{y_{n}^{k}}_{l} \log(p_{n}^{k}) \longleftrightarrow \widetilde{y}_{n}^{k} \text{ Pseudo-label}$$

$$\underbrace{\mathsf{Encoder}}_{lmage} \underbrace{\mathsf{Encoder}}_{\mathsf{Deep feature}} \underbrace{\mathsf{Geneate label}}_{\mathsf{Deep feature}} \underbrace{\mathsf{Pseudo-label}}_{\mathsf{Pseudo-label}}$$

$$\underbrace{\mathsf{C}_{n}: \text{ class for pixel n}}_{C_{j}: \text{ class for superpixel j}} \begin{bmatrix} c_{n} = \arg\max p_{n}^{k}, & n \in [0, N) \\ C_{j} = \arg\max |c_{n}|, & j \in [0, M), n \in S_{j} \\ \vdots \\ p_{n}^{k} = \mathbf{1}(c_{n} = C_{j}), & j \in [0, M), n \in S_{j} \end{bmatrix}$$

Deep Superpixel Cut

- Proposed DSC
 - Regard the segmentation as a superpixelwise graph-partition problem, based on their deep similarity.
 - If two superpixel a and b are more similar in deep features, then the probability they belong to different partitions should be lower.

Fig 9. superpixel graph

I: Image

F: Pixel deep representation

P: Probability of each pixel belong to which partition

K: partition number

G: Superpixel deep representation

Q: Probability of each superpixel belong to which partition

W: Similarity matrix

L: DSC loss

• Loss function

•

$$\mathcal{L}_{s} = \alpha \mathcal{L}_{1} + \beta \mathcal{L}_{2}$$

$$= \alpha \sum_{n=1}^{N} \sum_{k=1}^{K} \hat{y}_{n}^{k} \log(p_{n}^{k}) + \beta \sum_{k=1}^{K} Q_{k}^{T} \mathbf{W}(1 - Q_{k})$$
Optimization
$$\frac{\partial \mathcal{L}_{2}}{\partial F} = \frac{\partial \mathcal{L}_{2}}{\partial Q} \frac{\partial Q}{\partial G} \frac{\partial G}{\partial F}$$
DSC loss L2 is also differential.
$$\frac{\partial \mathcal{L}_{2}}{\partial Q_{k}} = \frac{\partial (Q_{k}^{T} \mathbf{W}(1 - Q_{k})))}{\partial Q_{k}}$$

$$\frac{\partial g_{j}}{\partial f_{i}}$$
Softmax operation
$$= \frac{\partial (Q_{k}^{T} \mathbf{W}1 - Q_{k}^{T} \mathbf{W}Q_{k})}{\partial Q_{k}}$$

$$= \mathbf{W}1 - \mathbf{W}Q_{k} - (Q_{k}^{T} \mathbf{W})^{T}$$

$$\frac{z_{ij}}{\sum_{i=1}^{N} z_{ij}}$$

Experiment

- Dataset: BSDS500[1]
- Metric: SC, RI, VI[2]
- Ablation study

IMG	REC	TEM	\mathcal{L}_1	\mathcal{L}_2	SC	PRI	VI
\checkmark					0.405	0.761	3.483
\checkmark	\checkmark				0.388	0.756	3.622
\checkmark	\checkmark	\checkmark			0.453	0.769	3.019
\checkmark	\checkmark	\checkmark	\checkmark		0.477	0.769	2.471
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	0.488	0.764	2.315

Method		SC		RI		VI	
		ODS	OIS	ODS	OIS	ODS	OIS
SLIC	IMG	0.354	0.402	0.698	0.726	2.391	2.306
	SuperAE	0.376	0.415	0.710	0.745	2.360	2.286
	DSC	0.428	0.485	0.709	0.742	2.262	2.079
MS	IMG	0.515	0.535	0.771	0.805	2.450	2.429
	SuperAE	0.497	0.550	0.777	0.795	2.162	2.077
	DSC	0.504	0.543	0.739	0.762	2.014	1.849
EGB	IMG	0.458	0.467	0.770	0.775	2.334	2.325
	SuperAE	0.491	0.500	0.774	0.782	2.190	2.180
	DSC	0.506	0.548	0.737	0.779	1.989	1.853

Tab 2. The ablation study of different components

• Effect of DSC

Tab 3. The ablation study of different superpixels

Method	SC		PI	RI	VI	
Wiethou	ODS	OIS	ODS	OIS	ODS	OIS
k-means, RGB	0.340	0.344	0.708	0.732	3.156	3.146
k-means, Deep	0.375	0.382	0.718	0.739	2.865	2.859
NCut, RGB	0.414	0.465	0.717	0.771	2.308	2.213
NCut, Deep	0.386	0.423	0.704	0.754	2.433	2.382
DSC	0.452	0.505	0.726	0.778	2.069	2.002

Tab 4. Compare DSC with other clustering algorithm

[1] Arbelaez P, Maire M, Fowlkes C, et al. Contour detection and hierarchical image segmentation[J]. *IEEE transactions on pattern analysis and machine intelligence*, 2010, 33(5): 898-916.

[2] Pont-Tuset J, Marques F. Supervised evaluation of image segmentation and object proposal techniques[J]. *IEEE transactions on pattern analysis and machine intelligence*, 2015, 38(7): 1465-1478.

Experiment

Example of different stage

(a) original image

(b) reconstructed image (c) ground truth

- (d) iter 0
- (e) iter 64

(f) iter 128

Fig 10. different stage in our method

BSDS500 benchmarks

N 4 1	SC		PRI		VI	
Method	ODS	OIS	ODS	OIS	ODS	OIS
SLIC [10]	0.37	0.38	0.74	0.75	2.56	2.50
NCuts [4]	0.45	0.53	0.78	0.80	2.23	1.89
EGB [5]	0.52	0.57	0.80	0.82	2.21	1.87
MS [21]	0.54	0.58	0.79	0.81	1.85	1.64
gPb-owt-ucm [8]	0.59	0.65	0.83	0.86	1.69	1.48
CAE-TVL [22]	0.51	0.56	0.79	0.82	2.11	2.02
Backprop [13]	0.47	0.50	0.75	0.77	2.18	2.15
Mumford-Shah [15]	0.49	—	0.71	_	2.20	_
W-Net [14]	0.57	0.62	0.81	0.84	1.76	1.60
DSC	0.56	0.60	0.80	0.83	1.82	1.62

Tab 5. BSDS500 benchmarks

Convergence Curve

Fig 11. Visualization

Qualitative Result

Fig 12. Segmentation Result

Conclusion

- We propose a deep learning models for unsupervised image segmentation
- To learn the deep embedding, we design a SuperAE, which also smooths the original image and conductive to the superpixels generation.
- For segmentation, we propose a novel clustering method DSC which measures the deep similarity between superpixels and partitions them into perceptual regions by soft association.
- Experiment results on BSDS500 demonstrate the efficacy of our proposed, and our DSC outperforms most of the unsupervised segmentation methods.

Thank for you listening!

Qinghong Lin linqinghong@email.szu.edu.cn