25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGONITION 10-15 JANUARY, 2021

Air-Writing with Sparse Network of Radars using Spatio-Temporal Learning

Muhammad Arsalan^{*†}, Avik Santra^{*}, Kay Bierzynski^{*}, Vadim Issakov[†]

- * Infineon Technologies AG, Neubiberg, Germany
- ⁺ Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany

Problem Statement/ Motivation

- > Target localization and tracking using trilateration and $\alpha\beta$ filter
- Convolutional neural network (CNN) or long short term memory (LSTM) for recognition of the trajectories into intended characters

Limitations:

- > Based on at least three radars
- > Difficulty in deployment in space constrained applications
- > Trilateration is dependent on the intersecting field-of-view
 - Physical placement of the radars is crucial
 - Hand occlusion
- Large network size is undesirable for embedded devices

*M. Arsalan and A. Santra, "Character Recognition in Air-Writing Based on Network of Radars for Human-Machine Interface," in IEEE Sensors Journal, vol. 19, Oct.1, 2019.

Proposed Solution

- > Operates on one or two radars
- > Instead of global trajectories, range information is used as input
- > Joint global trajectory reconstruction and recognition of the character

Experimental Setup and Dataset

- > Infineon's BGT60TR24B 60 GHz FMCW radar chipset
- > Character or alphabets: A J
- > Numerals: 1 5
- > For each character:
 - 200 samples are used for training
 - 50 samples for testing using random trials

Classification accuracy of the proposed solution to other models and baseline using three radars

Proposed Method	Avg. Accuracy (%)	Baseline*	Avg. Accuracy (%)
Single radar	90.33 ± 4.44	LSTM-CTC	93.33
Two radars	97.33 ± 2.67	BLSTM-CTC	96.67
		ConvLSTM-CTC	98.33
		DCNN	98.33

Average	L_{MSE}	for	reconstruction
---------	-----------	-----	----------------

Radar configuration	Avg. L_ _{MSE} (e-4)	
Single radar	6.8 ± 41.5	
Two radars	1.4 ± 0.7	

*Baseline method

Results (1/2)

*M. Arsalan and A. Santra, "Character Recognition in Air-Writing Based on Network of Radars for Human-Machine Interface," in IEEE Sensors Journal, vol. 19, Oct.1, 2019.

Č

Conclusions

- Air-writing offers an alternative interface to touch and keyboard interfaces to machines and can be used for augmented reality, virtual reality applications among others.
- > We propose an air-writing system based on sparse network of millimeter-wave radars, i.e. strictly less than three.
- > A novel 1D DCNN-LSTM-1D transposed DCNN has been proposed to reconstruct the 2D drawn image with respect to a reference and classify the drawn character.
- > The proposed solution achieves:
 - 97.33 \pm 2.67% classification accuracy with trajectory reconstruction error of around 1.4e-4 with two radars
 - 90.33 \pm 4.44 % classificiation accuracy with trajectory reconstruction error of 6.8e-4 with one radar.
- > Moreover, the proposed solution requires less memory making it suitable for low commodity hardware.

Contact:

- Muhammad Arsalan <muhammad.arsalan@infineon.com>
- Avik Santra <avik.santra@infineon.com>
- Kay Bierzynski <Kay.Bierzynski@infineon.com>
- Vadim Issakov <vadim.issakov@ovgu.de>

Part of your life. Part of tomorrow.