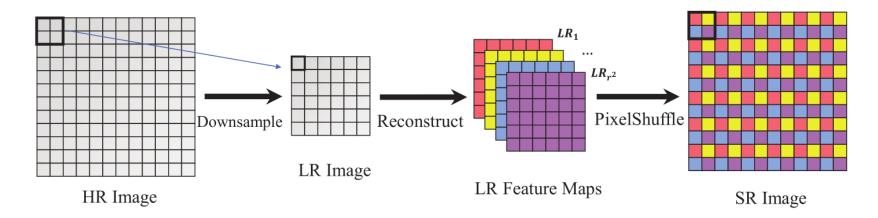


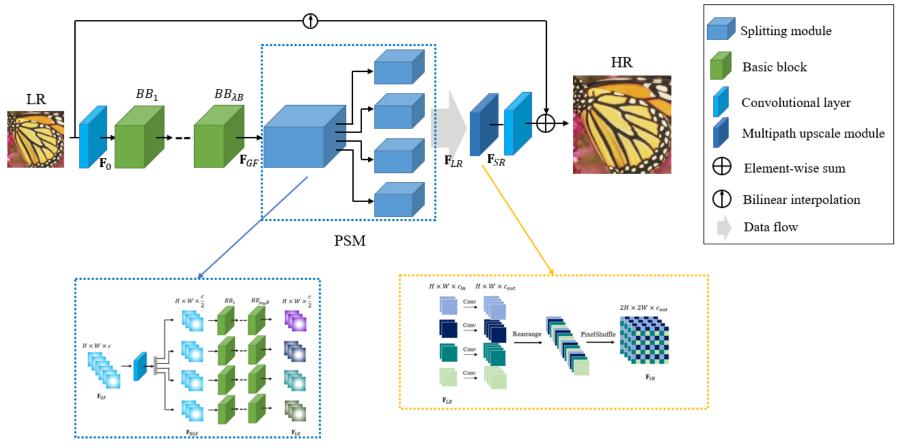
Progressive Splitting and Upscaling Structure for Super-Resolution

Qiang Li, Tao Dai, Shu-Tao Xia

Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China liqiang 19@mails.tsinghua.edu.cn, daitao.edu@gmail.com, xiast@sz.tsinghua.edu.cn


CATALOG

- Motivation
- Architecture
- Experiments


Motivation


- Few SR methods have paid attention to exploring potential representation ability of upscaling layer
- LR feature maps share similar patterns as they are extracted from a single trunk network
- We try generating decoupled SR features to get better SR results

Architecture

Experiments

Study on Small Model : EDSR-baseline

TABLE I: Quantitative results (scale $\times 2$) of our PSUS with different λ and baseline. PSNR(dB) and SSIM are tested on Y channel without self-ensemble [10]. DIV2Kval denotes DIV2K validation set. Best results are **highlighted**.

	Baseline	$\lambda = 0.875$	$\lambda = 0.75$	$\lambda = 0.5$
	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM
Set5	37.96/ 0.9604	37.96/0.9603	37.98 /0.9603	37.98/0.9604
Set14	33.51/0.9168	33.48/0.9163	33.52/ 0.9173	33.53 /0.9172
BSD100	32.13/0.8991	32.12/0.8989	32.15/0.8994	32.15 /0.8993
Urban100	31.80/0.9255	31.86/0.9261	31.96 /0.9268	31.95/ 0.9269
DIV2Kval	36.04/0.9449	36.06/0.9450	36.10/0.9453	36.11/0.9454
Average	34.29/0.9294	34.30/0.9293	34.34/0.9298	34.34/0.9298

TABLE III: Quantitative metrics of model complexity and computational cost for different ×4 models.

	EDSR-Baseline	PSUS with ResBlock
Params	1.518M	1.483M (-2.3%)
FLOPs	257.47G	224.27G (-12.9%)

TABLE IV: PSNR(dB) and SSIM results (scale $\times 4$) of baseline and our proposed PSUS. Best results are **highlighted**.

	Baseline	Baseline (from	PSUS
	(from scratch)	pre-trained x2)	with ResBlock
	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM
Set5	32.09/0.8936	32.11/0.8937	32.13/0.8938
Set14	28.53/0.7807	28.56/0.7816	28.50/0.7805
BSD100	27.55 /0.7352	27.54/ 0.7357	27.55 /0.7354
Urban100	25.95/0.7817	26.00/ 0.7839	26.01/0.7839
DIV2Kval	30.38/0.8366	30.40/0.8373	30.42/0.8375

Experiments

Study on Large Model : RCAN

TABLE V: PSNR(dB) and SSIM results of RCAN and PSUS with RG. Best results are **highlighted**.

Method scale	coala	Set5	Set14	BSD100	Urban100	Manga109
	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	
RCAN	×2	38.27 /0.9614	34.01/0.9216	32.39 /0.9023	33.23/0.9379	39.42/0.9785
PSUS	×2	38.26/0.9615	34.07/0.9222	32.39/0.9024	33.23 /0.9376	39.37/ 0.9785
RCAN	×4	32.57/0.8994	28.83 /0.7878	27.74 /0.7421	26.76/0.8067	31.12/0.9163
PSUS	$\times 4$	32.59 /0.8992	28.81/ 0.7879	27.74/0.7424	26.71/0.8057	31.05/0.9163

TABLE VI: Quantitative metrics of model complexity and computational cost for RCAN and PSUS with RG.

	scale	RCAN	PSUS
Params	$\times 2$	15.445M	15.420M
	$\times 4$	15.592M	15.591M
FLOPs	$\times 2$	1.989T	1.986T
	$\times 4$	2.068T	2.038T

Study on Unsupervised Model: ZSSR

TABLE VII: Quantitative metrics of baseline and our proposed PSUS. Best PSNR(dB) and SSIM (scale $\times 2$) are **highlighted**.

Method	Params	FLOPs	Set5	Set14	BSD100
	raianis	rlors	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM
baseline	372.80K	48.99G	36.23/0.9536	31.98/0.9037	30.98/ 0.8859
PSUS	373.12K	49.03G	36.28/0.9545	32.08/0.9046	31.04 /0.8849

Experiments

Visual Comparison

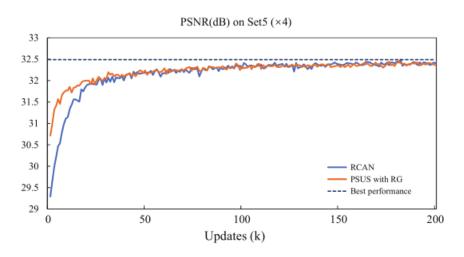


Fig. 6: PSNR on validation set of $\times 4$ models during first 2×10^5 iterations of training.

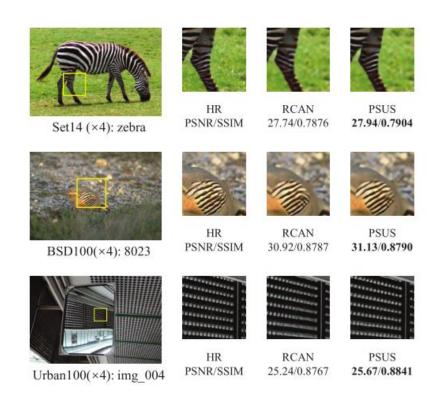


Fig. 7: Visual comparison for $\times 4$ SR. Best results are **high-lighted**.

THANKS