SAILENV

Learning in Virtual Visual Environments Made Simple

WHY VIRTUAL ENVIRONMENTS?

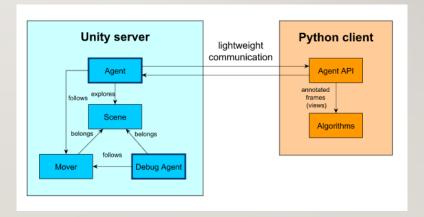
- Simulation of real-world settings with 3D graphics engine
- Perform experiments too costly in real-world settings
- Automatic and precise annotation
 - Bounding boxes, semantic segmentation, motion information, etc...
 - Little to no need of human intervention for data collection
- High degree of control on experimental settings
 - Lighting and weather conditions, image resolution, etc...

EXISTING VIRTUAL ENVIRONMENTS

Platform	Photoreal	Depth	OptFlow	LightNet	os
DeepMindLab		√		n.a.	Unix
Habitat	\checkmark	\checkmark		n.a.	Unix
AI2-THOR	\checkmark	\checkmark			Unix
SAILenv	\checkmark	✓	\checkmark	\checkmark	Win+Unix

SAILENV ARCHITECTURE

Client-server architecture


- Virtual Environment: server
- Agent API: client

Unity Server

- Physics Simulation
- · Real-Time rendering
- Data generation and annotation
- Lightweight Network Protocol

Python Client

- Lightweight, cross-platform API
- High-level commands for the Server
- Exposes views to common ML Frameworks

OBJECT LIBRARY

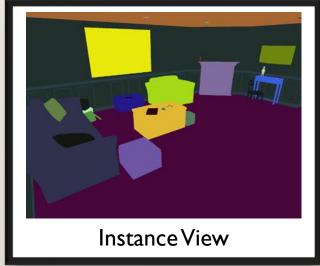
READY-TO-USE DOMESTIC SCENES

MOVING AGENT IN THE SCENE

- Agent has three ways of moving in the scene
- I. Python commands to define custom moving criteria
 - Simple functions for changing position and orientation
- 2. Following a track included in the scene
 - Track is created by the scene designer
 - Can be changed through the Unity Editor
 - Cannot be changed at runtime
- 3. Through keyboard and mouse in FPS-like fashion

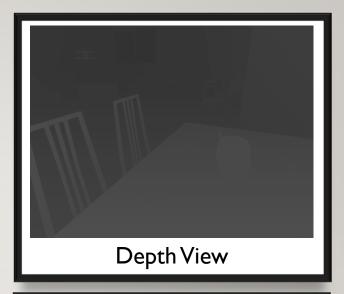
MOVING OBJECTS IN THE SCENE

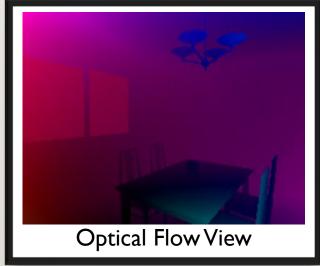
- Movements are simulated through Unity Physics Engine
- The movement behavior is scripted with C#

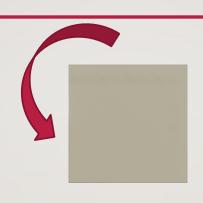

ENVIRONMENT VIEWS

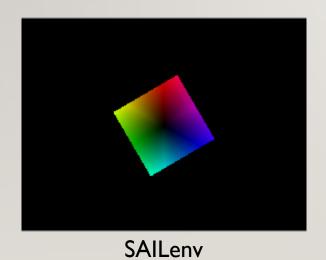
- SAILenv generates views of the environment in real-time
- Every view is taken from the Agent POV
- Each view yields pixel-wise information on the environment
 - Main: HxWx3 RGB view in OpenCV format
 - Category: HxWxI category ID of the object
 - Object: HxWx3 unique object ID
 - Flow: HxWx2 optical flow of the pixel w.r.t. the Agent
 - Depth: HxWxI depth of the pixel w.r.t. the Agent

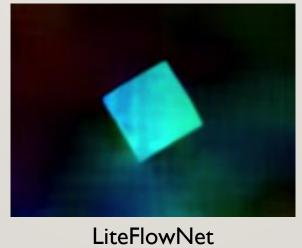
CATEGORY AND INSTANCE SEGMENTATION

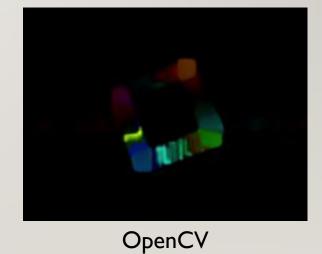

- Categories can be quickly customized
 - Through Unity Editor
- Object ID is automatically generated
 - Guaranteed to be unique



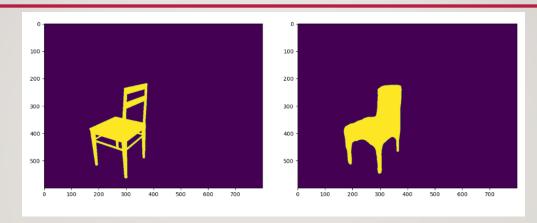

DEPTH AND OPTICAL FLOW

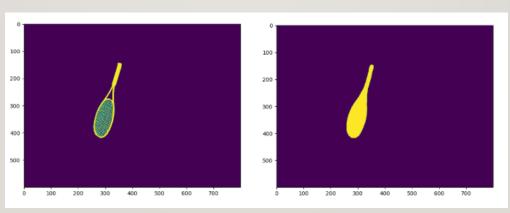

- Depth intensity is proportional to vicinity w.r.t. the Agent position
- Optical Flow is the velocity in px per frame of the pixel





OPTICAL FLOW COMPARISON




PHOTOREALISM EVALUATION

- Can a state-of-the-art object detector recognize objects in SAILenv?
- We tested with Mask R-CNN trained on COCO-train2017
- We focused on categories from the COCO dataset
- We measured the IoU between predictions and ground truth from SAILenv
- Mask R-CNN robustly detects a large portion of objects
- Some problems arise from occlusions and labeling criteria

DETECTION ERRORS

Ground Truth

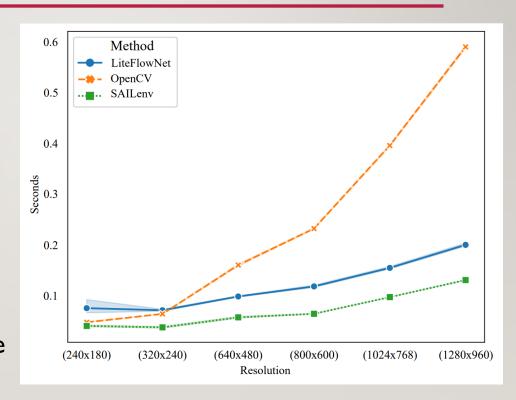

Prediction

PHOTO-REALISM EVALUATION WITH MASK R-CNN (COCO)

Category	Pixel-wise IoU	Bounding Box IoU	
bed	0.7830 ± 0.0879	0.8201 ± 0.0894	
chair	0.6235 ± 0.0566	0.5557 ± 0.4162	
couch	0.8742 ± 0.0533	0.9121 ± 0.0561	
dining table	0.6891 ± 0.0398	0.4553 ± 0.4096	
laptop	0.9551 ± 0.0098	0.9476 ± 0.0207	
airplane	0.7193 ± 0.0314	0.7865 ± 0.1005	
tennis racket	0.5120 ± 0.0475	0.9548 ± 0.0127	
toilet	0.9274 ± 0.0178	0.9623 ± 0.0201	
tv	0.9641 ± 0.0171	0.9673 ± 0.0135	

OPTICAL FLOW EVALUATION

- As seen before, motion estimation is highly accurate
- What is the computational burden of motion estimation?
- We compared with OpenCV and FlowNetLite

CONCLUSIONS

- We presented SAILenv, a platform based on Unity Engine
- Platform which makes it easy to create, run and get data from realistic 3D Virtual Environments
- Vision-related algorithms can be efficiently evaluated
- To the best of our knowledge, SAILenv is the first platform which yields motion information
- We believe it is a good entry point for researchers interested in 3D Virtual Environments

TEAM AND LINKS

- Team members:
 - Enrico Meloni
 - Luca Pasqualini
 - Matteo Tiezzi
 - Stefano Melacci
 - Marco Gori
- Official project page: http://sailab.diism.unisi.it/sailenv/
- arXiv pre-print: https://arxiv.org/abs/2007.08224
- GitHub: https://github.com/sailab-code/sailenv

THANKYOU FOR LISTENING