

ACTIVATION DENSITY DRIVEN EFFICIENT PRUNING IN TRAINING

Tim Foldy-Porto, Yeshwanth Venkatesha*, and Priya Panda

Electrical engineering

Yale University

INTELLIGENT COMPUTING LAB

https://intelligentcomputinglab.yale.edu/

Motivation

- Al Applications on embedded devices
- Power and memory constraint

Autonomous driving

Speech Recognition

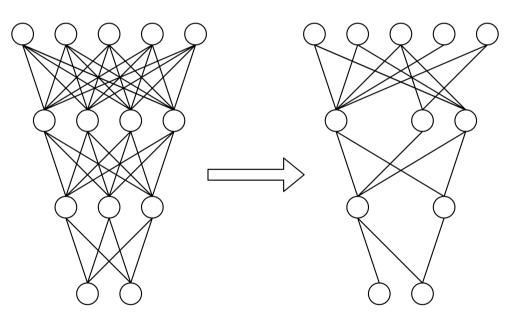
Personal Assistants

https://www.pbs.org/newshour/science/in-a-crash-should-self-driving-cars-save-passengers-or-pedestrians-2-million-peopleweigh-in https://medium.com/analytics-vidhya/automatic-speech-recognition-systems-in-deep-learning-a6f91bbe7500



Pruning

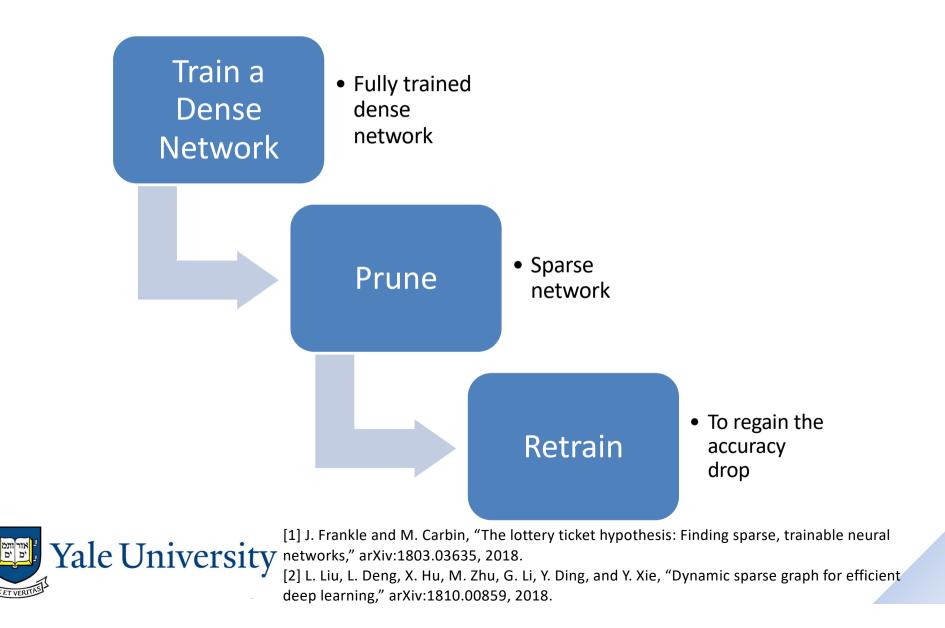
 Remove redundant neurons and synapses while maintaining accuracy



Dense Network

Pruned Network

Previous Work

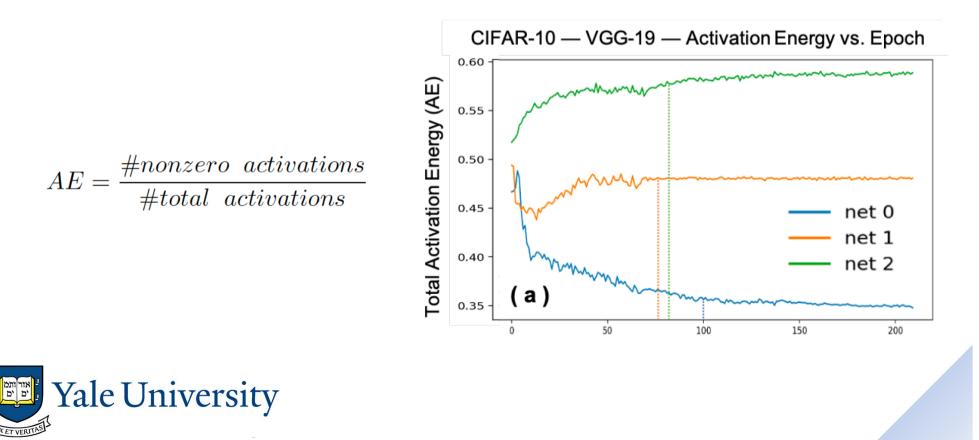


Contributions

- In-training pruning method
- Novel metric Activation Density/Energy (AD/AE)
- OPS reduction on benchmark datasets
- Compute cost of networks during both training and inference.

Activation Energy

- Key Observation: Number of non-zero activations decreases as training progresses
- Activation Energy: The density of non-zero activations



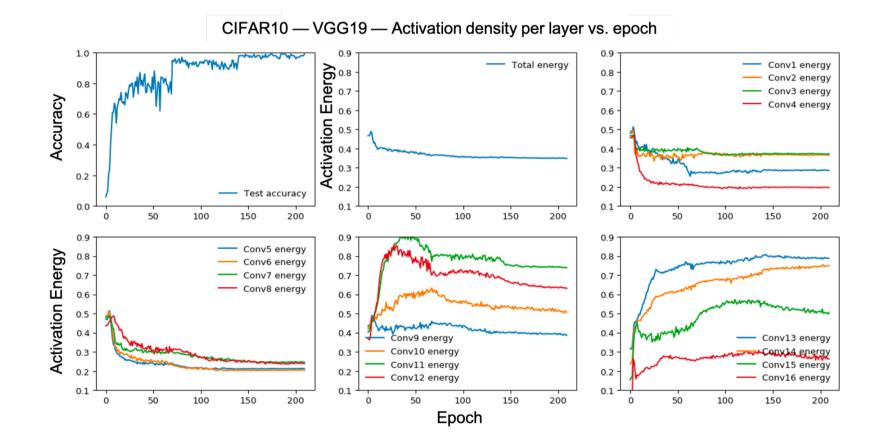
Algorithm

- Periodically monitor the AEs of the layers during the training process and prune the layers based on the density at regular training intervals
- Set pruning criteria to be equivalent to the saturation point.
- Stopping criteria based on the overall shape of AE vs. epoch curve for each network

Algorithm 1: Activation Density driven Pruning in Training

Training				
1 Input: Training dataset and randomly initialized				
network <i>net</i> _{initial}				
2 Output: Trained and pruned network net_{final}				
$\mathfrak{s} net[0] = net_{initial}$				
4 //Note, net[0] can be a large network like {VGG-19,				
ResNet18};				
5 $epoch = 0;$				
6 $index = 0;$				
7 while <i>not</i> stopping (δ) criteria do				
8 $net = $ Randomly Initialized $(net[index]);$				
9 while not pruning (ρ) criteria do				
10 $train(net, epoch);$				
11 for L in net.Layers do				
12 $\#nonzero[L] =$				
count_nonzero_activations(L);				
$AE[L] = \frac{\#nonzero[L]}{\#total[L]};$				
14 end				
15 $epoch + +;$				
16 //Note, we train the network net[index] while				
monitoring the layer-wise AE till ρ is satisfied.				
17 end				
18 $index + +;$				
19 for L in net.Layers do				
20 $net[index].LayerSize[L] = AE[L]$				
$\times net[index - 1].LayerSize[L];$				
21 end				
22 <i>INote, we prune the network</i> $net[index - 1]$ <i>to get</i>				
the compressed network $net[index]$ based on AE				
per layer. The pruning continues till δ is satisfied.				
23 end				
24 $net_{final} = net[index];$				

AE Trend



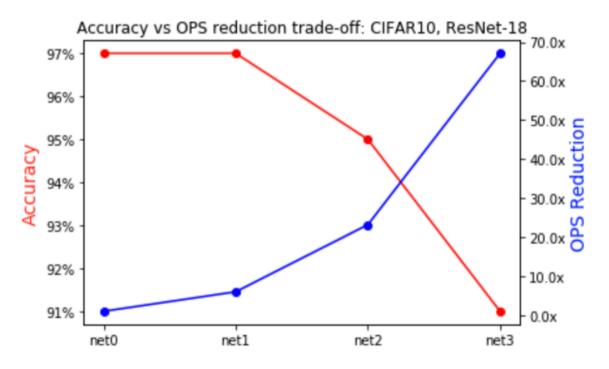
Results

- On an average 38% of channels are pruned in the first 8 layers layer 1-8 and 25% channels in the latter 8 layers layer 9-16 for VGG19 on CIFAR10.
- Shows effectiveness of the AE driven pruning for structured layer-wise network compression focused on overall OPS reduction.

Network	Configuration	Accuracy	Parameters	OPS	Training			
		_	reduction	reduction	Epochs ρ			
CIFAR-10, ResNet18								
net 0	[64, 64, 64, 64, 64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512]	97 %	1×	$1 \times$	100 epochs			
net 1	[34, 29, 41, 25, 33, 58, 78, 27, 65, 71, 83, 46, 69, 120, 191, 219, 288]	97 %	7.3×	6.0×	70 epochs			
net 2	[21, 16, 30, 10, 22, 24, 47, 9, 39, 26, 48, 12, 39, 41, 85, 63, 188]	95 %	41.2×	23.2×	70 epochs			
net 3	[14, 9, 21, 5, 15, 13, 32, 5, 26, 13, 34, 5, 25, 21, 45, 12, 142]	91 %	199.3×	67.1×	N/A			
CIFAR-10, VGG-19								
net 0	[64, 64, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512	97 %	$1 \times$	$1 \times$	100 epochs			
net 1	[18, 23, 47, 25, 54, 51, 62, 61, 197, 258, 378, 322, 402, 383, 259, 134]	94 %	3.1 ×	5.6 ×	70 epochs			
net 2	[10, 9, 30, 11, 21, 31, 22, 21, 62, 70, 113, 141, 256, 299, 194, 71]	93 %	10.3×	$27.4 \times$	N/A			
	CIFAR-100, ResNet18							
net 0	[64, 64, 64, 64, 64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512]	81.0 %	1×	1×	25 epochs			
net 1	[39, 31, 49, 24, 44, 54, 90, 36, 84, 88, 155, 65, 136, 130, 231, 105, 300]	79.0 %	7.6 ×	5.1 ×	N/A			
CIFAR-100, VGG-19								
net 0	[64, 64, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512	76.0 %	$1 \times$	$1 \times$	25 epochs			
net 1	[34, 23, 51, 30, 63, 63, 73, 82, 210, 285, 333, 357, 317, 259, 181, 106]	73.0 %	3.9 ×	5.3×	N/A			
TinyImageNet, ResNet18								
net 0	[64, 64, 64, 64, 64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512]	51.54 %	1×	1×	25 epochs			
net 1	[31, 21, 47, 27, 48, 62, 99, 58, 94, 85, 161, 69, 133, 93, 152, 56, 247]	50.51 %	10.6×	4.7 ×	N/A			

Accuracy vs OPS Reduction Trade-off

- A decreasing AE implies we still have some redundancies in the network that can facilitate pruning without significant loss in accuracy
- Find a trade-off point when the AE curve starts increasing



Training Complexity

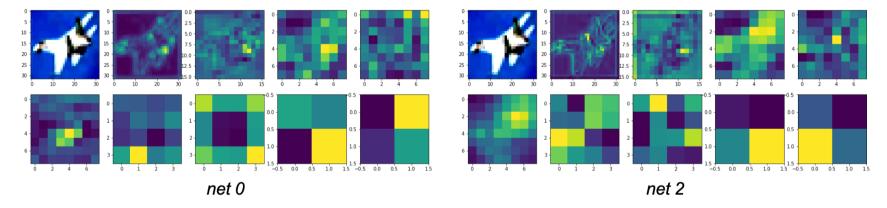
• Captures the amount of time and training energy required to achieve a given model accuracy, compression and efficiency.

 $\sum_{net_i} (\text{OPS reduction}_{net_i})^{-1} \times (\# \text{ training epochs}_{net_i})$

Network	ResNet18			VGG-19		
	CIFAR-10	CIFAR-100	Tiny ImNet	CIFAR-10	CIFAR-100	
net 0	210.0 (1×)	210.0 (1×)	60.0 (1×)	210.0 (1×)	210.0 (1×)	
net 1	135.0 (0.64×)	66.2 (0.32×)	37.7 (0.62×)	$120.2 (0.57 \times)$	64.6 (0.31×)	
net 2	120.8 (0.58×)	-	-	-	-	

Activation Visualization

- Visualization of increasing activation density using a colormap (more color implying more neuronal activation)
- Although certain layers break the pattern, overall trend of higher AE in the layers of net2 than in the layers of net0



CIFAR-10 — VGG-19 — Activation visualization

Comparison with Previous Work

• VGG19 on CIFAR100

Authors	Training complexity	Accuracy	Parameters reduction	OPS reduction
Garg et al. [5]	206.6	71 %	9.1×	3.9×
Liu et al. [13]	260.0	73 %	$8.7 \times$	1.6×
Ours	64.6	73 %	$3.9 \times$	5.3×

Comparison with Lottery Ticket Hypothesis

Model	Authors	Training	Accuracy	Parameters	OPS
		memory complexity		reduction	reduction
ResNet18	LTH [8]	206.45	93 %	5.6×	N/A
	Ours	120.8	95 %	41.2×	$23.2 \times$
VGG-19	LTH [8]	105.1	93 %	35.7×	N/A
	Ours	129.4	93 %	$10.3 \times$	$27.4 \times$

Conclusion

- We propose an 'Activation Density' metric, a heuristic that provides a structured and interpretable way of optimizing the network architecture.
- We present a novel pruning in training method that yields significant compression benefits on state-of-the-art deep learning architectures.
- The progressive downsizing of a network during the training process yields training complexity benefits.
- We get considerable benefits in training complexity and compute-OPS-reduction over the baseline unpruned model, as well as over previously proposed pruning methods.

