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Introduction

• Goal
- Capturing and reconstructing detailed 3D human body models from 

monocular images

• Contribution
- Estimate the shape details in a memory efficient way based on learning 

an implicit function

- Multi-scale features encode both local and global information



Related work

• Model based methods
- Optimization based methods

Guan et al. ICCV 2019, Bogo et al. ECCV 2014,

Huang et al. 3DV 2017, Xu et al. ACM ToG 2018.

- Regression based methods

Kanazawa et al. CVPR 2018, Pavlakos et al. CVPR 2018,

Kolotouros et al. CVPR 2019, Kolotouros et al. ICCV 2019.

Without detailed appearance

• Model free methods
- Explicit representation

Varol et al. ECCV 2018, Zheng et al. ICCV 2019,

Natsume et al. CVPR 2019.

- Implicit representation

Saito et al. CVPR 2019. Chibane et al. CVPR 2020, 

Onizuka et al. CVPR 2020.

Volumetic Loss
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Our method

Extract multi-scale features from multi-view images

Loss Function:

Predicted 
occupancy value

Ground truth 
occupancy value



Experiments

• Datasets

CAPE dataset [2]

[1] Vlasic et al. Articulated Mesh Animation from Multi-view Silhouettes. ACM ToG 2008.
[2] Ma et al. Learning to Dress 3D People in Generative Clothing. CVPR 2020.

Articulated dataset [1]

Dataset Synthetic? Total Number Train / Test

Articulated dataset No 2000 80% / 20%

CAPE dataset Yes 2910 80% / 20%



Experiments

• Metrics
- Point-to-surface Euclidean distances (P2S) from the vertices on the predicted 

mesh to the ground truth mesh (Lower is better)

- Volumetic intersection over union (IoU) (Higher is better)

- Chamfer-L2 (Lower is better)

Completeness: Distance from the points of the GT mesh to the predicted mesh
Accuracy: Distance from the points of the predicted mesh to the GT mesh



Experiments

• Quantitative results

Methods P2S ↓ Chamfer-L2↓ IoU ↑

SPIN [1] 3.5206 0.2679 0.3506

DeepHuman [2] 3.9448 0.2675 0.3742

PIFu [3] 0.8194 0.0210 0.8255

Ours 0.7332 0.0194 0.8484

[1] Kolotouros et al. Learning to Reconstruct 3D Human Pose and Shape via Model-Fitting in the Loop. ICCV 2019.
[2] Zheng et al. DeepHuman: 3D Human Reconstruction From a Single Image. ICCV 2019.
[3] Saito et al. PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization. ICCV 2019.

Quantitative comparison for the Articulated dataset
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[1] Kolotouros et al. Learning to Reconstruct 3D Human Pose and Shape via Model-Fitting in the Loop. ICCV 2019.
[2] Zheng et al. DeepHuman: 3D Human Reconstruction From a Single Image. ICCV 2019.
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Methods P2S ↓ Chamfer-L2↓ IoU ↑

SPIN [1] 2.2134 0.1271 0.4044

DeepHuman [2] 3.4028 0.1850 0.3861

PIFu [3] 1.0330 0.0212 0.7571

Ours 0.9482 0.0196 0.7829

Quantitative comparison for the CAPE dataset



Experiments

[1] Kolotouros et al. Learning to Reconstruct 3D Human Pose and Shape via Model-Fitting in the Loop. ICCV 2019.
[2] Zheng et al. DeepHuman: 3D Human Reconstruction From a Single Image. ICCV 2019.
[3] Saito et al. PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization. ICCV 2019.
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Visualization of P2S



Experiments

• Qualitative results
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Thank you!


