

Video Anomaly Detection by Estimating Likelihood of Representations

Yuqi Ouyang Victor Sanchez

Signal and Information Processing (SIP) Lab Department of Computer Science The University of Warwick

ICPR 2020

Contact: yuqi.ouyang@warwick.ac.uk

Outline

- 1. What is Video Anomaly Detection?
- 2. Model Overview.
- 3. Training.
- 4. Anomaly Inference.
- 5. Experiments & Analysis.
- 6. Future Work.

What is Video Anomaly Detection?

Detect abnormal events in surveillance video data.

Infeasible to gather all anomaly video data.

Outlier detection – only train with normality, test to detect abnormality

GMM-DAE: Model Overview

Figure: The proposed GMM-DAE model.

GMM-DAE: Training

Train Autoencoder (Eq. 2.):

$$L(\boldsymbol{X}, \boldsymbol{\hat{X}}) = \frac{1}{n} \sum_{i=1}^{n} ||x_i - \hat{x}_i||_2^2 + \beta ||\boldsymbol{W}||_2^2,$$

X: n uncorrupted images.

 \widehat{X} : *n* output images,

 $||W||_2^2$: ℓ_2 -regularization on the weights by a factor β .

GMM-DAE: Training

Train GMM (Eq. 3-11): Expectation-Maximization.

GMM-DAE: Anomaly Inference

 $\rightarrow X_1$

Anomaly Inference (Eq. 12-15):

 X_2

$$P(z) = \log \sum_{j=1}^{K} \frac{\hat{\phi}_j \cdot \exp{-\frac{1}{2} (z - \hat{\mu}_j)^T \hat{\Sigma}_j^{-1} (z - \hat{\mu}_j)}}{\sqrt{|2\pi \hat{\Sigma}_j|}},$$
(13)

$$A(x^{t}) = -\left[\lambda_1 P(z_{x^{t}}) + \lambda_2 \cdot PSNR(x^{t}, \hat{x}^{t}) + \lambda_3 P(z_{d^{t}}) + \lambda_4 \cdot PSNR(d^{t}, \hat{d}^{t})\right],$$
(14)

$$A(I^{t}) = max\{A(x_{1}^{t}), A(x_{2}^{t}), ..., A(x_{n}^{t})\}.$$
(15)

GMM-DAE: Experiments & Analysis

Model	UCSD Ped2	CUHK Avenue	ShanghaiTech
MPPCA [14]	69.3	-	-
MPPCA+SFA [25]	61.3	-	-
MDT [25]	82.9	-	-
Unmasking [13]	82.2	80.6	-
AMDN [41]	90.8	-	-
FRCN action [10]	92.2	89.8	-
Conv-AE [9]	90.0	70.2	60.9
STAE [42]	91.2	77.1	-
GANs [30]	93.5	-	-
FFP+MC [18]	95.4	85.1	72.8
LSA [1]	95.4	-	72.5
MLAD [40]	99.21	71.54	-
sRNN-AE [22]	92.21	83.48	69.63
MemAE [8]	94.1	83.3	71.2
MLEP-FP [19]	-	89.2	73.4
MemAE2020 [29]	97.0	88.5	70.5
SDOR [28]	83.2	-	-
SAGC [26]	-	-	76.1
GMM-DAE	96.5	89.3	81.2

Table: Frame-level AUROC curve (%) comparison with other baseline models, on three datasets (Higher is better).

Method	AUROC
DAE+OP	90.1
DAE+OP+DP	93.9
DAE+OP+OL	94.2
DAE+OP+OL+DP+DL (GMM-DAE)	96.5
AE+OP+OL+DP+DL	95.8

Table: Frame-level AUROC curve (%) on the UCSD Ped2 dataset using different components of the proposed GMM-DAE model.

GMM-DAE: Experiments & Analysis

Figure: Performance analysis on the UCSD Ped2 dataset.

GMM-DAE: Experiments & Analysis

Figure: Distribution of the generated manifolds based on the normalized anomaly scores using PSNR values (left: OI+PSNR) and latent likelihood values (right: OI+LL) on the UCSD Ped2 test videos. Each color represents a range of anomaly scores.

Future Work

- □ We want to remove the object detector (because it causes miss-detection issue).
- □ Model training in an end-to-end way.
- Design a model to perform robust and accurate pixel-level detection.

Thank you for listening, Q?

Stay safe, be happy