

Incrementally Zero-Shot Detection by an Extreme Value Analyzer

Sixiao Zheng, Yanwei Fu, Yanxi Hou Fudan University

- problems in a batch setting.
- preserved as well.

• Most successful object detection models are formulated as supervised learning

• Humans not only have the ability to recognize novel unseen object classes, but incrementally incorporate these novel object classes to existing knowledge

- world object detection.
- model.
- Theory (EVT) has been introduced into object detection.
- projection distance (PD) loss.

• We introduce a new task of Incrementally Zero-Shot Detection (IZSD) for real-

• We propose an innovative model – IZSD-EVer in addressing IZSD by integrating Zero-shot detection (ZSD) and Class-Incremental Detection (CID) in a single

• We propose Extreme Value Analyzer (EVer), which is the first time Extreme Value

• We propose two novel losses, i.e., backgroud-forground MSE loss (bfMSE) and

- detection model
- **Goal**: to detect objects from old seen, new seen, and unseen classes.
- **Challenges**: efficient in semantic knowledge transfer, robust to catastrophic forgetting

New task: IZSD

examples of new seen object classes and semantic information are utilized to update the

Proposed Model: IZSD-EVer

Proposed Model: IZSD-EVer

- **Reconstruction Loss:** $\mathcal{L}_{rec} = \frac{1}{N_p} \sum_{i=1}^{N_p} \|f(x;\Theta) \mathbf{W}^T \mathbf{s}\|_2^2$
- Triplet Loss:

- $j \neq y_i$
- overall loss of the backbone:

$$\mathcal{L}_{FRCN} = \mathcal{L}_{cls}^{rpn} +$$

$$\mathcal{L}_{bone} = \mathcal{L}_{FRCN}$$

$$\mathcal{L} = \mathcal{L}_{bone} + \mathcal{L}_{c}$$

cls

• Feature Distance Loss: $\mathcal{L}_{fd}^{rpn} = \|f_{rpn}(x;\Theta_o) - f_{rpn}(x;\Theta_n)\|_F^2$

Regressor

- Distillation Loss: $\mathcal{L}_{cls}^{distill} = CE(softmax(\frac{\hat{y}_o}{T}), softmax(\frac{\hat{y}_n}{T}))$
- overall loss of IZSD-EVer: $\mathcal{L}_{IL} = \frac{N_{\mathcal{O}}}{N_{\mathcal{C}}} \left(\mathcal{L}_{cls}^{distill} + \mathcal{L}_{pd}^{zsc} \right) + \frac{N_{\mathcal{N}}}{N_{\mathcal{C}}} \mathcal{L}_{cls} + \gamma \mathcal{L}_{fd}^{rpn}$ $\mathcal{L} = \mathcal{L}_{bone} + \mathcal{L}_{IL}$
- Memory M: to alleviate the imbalance between old seen and new seen classes

- Construct EVer based on Pickands-Balkema-de Haan Theorem [1] to differentiate unseen from seen object classes
- use the GPD to model the projected semantic vectors for each seen class
- G(.): probability of being an extreme semantic vector for the corresponding seen classes

$$P_{min} = \min_{j \in \{1, 2, \dots, S\}} G(\|\mathbf{s} - \bar{\mathbf{s}}_j\|_2 - u_j, \hat{\sigma}_j, \xi)$$

The prediction class label:

$$\hat{y} = \begin{cases} \arg \max_{i \in \{1, 2, \dots, S\}} \mathbf{p}_i^{ic}, & P_{min} < \\ \arg \max_{i \in \{1, 2, \dots, U\}} \mathbf{p}_i^{zsc}, & P_{min} \geqslant \end{cases}$$

[1] A. A. Balkema and L. De Haan, "Residual life time at great age," The Annals of probability, pp. 792–804, 1974.

 δ unseen classes

Old classe, new classes and Unseen classes split in different incremental step.

Step	Old classes	New classes	Unseen classes	Train data	Test data
1	-	\mathcal{G}_1	$\mathcal{G}_2,\mathcal{G}_3,\mathcal{G}_4$	$\mid \mathcal{D}_{tr}(\mathcal{G}_1) \mid$	
2	\mathcal{G}_1	\mathcal{G}_2	$\mathcal{G}_3,\mathcal{G}_4$	$\mathcal{D}_{tr}(\mathcal{G}_2)$	$\mathcal{D}_{\mathcal{L}}(\mathcal{C})$
3	$\mathcal{G}_1,\mathcal{G}_2$	\mathcal{G}_3	\mathcal{G}_4	$\mathcal{D}_{tr}(\mathcal{G}_3)$	$\mathcal{L}_{te}(\mathcal{C})$
4	$ \mathcal{G}_1,\mathcal{G}_2,\mathcal{G}_3 $	\mathcal{G}_4	_	$\mid \mathcal{D}_{tr}(\mathcal{G}_4)$	

Experiment Results

Dataset	Method	\mathcal{G}_1	\mathcal{G}_2	\mathcal{G}_3	\mathcal{G}_4	mAP	Method	\mathcal{G}_1	\mathcal{G}_2	\mathcal{G}_3	\mathcal{G}_4	mAP	Method	\mathcal{G}_1	\mathcal{G}_2	\mathcal{G}_3	\mathcal{G}_4	mAP
VOC 2007	Faster	61.9	-	-	-	61.9	CIFRCN	63.9	-	-	-	63.9	IDWCF	66.3	-	-	-	66.3
	RCNN	33.3	67.8	-	-	50.6		43.8	71.2	-	-	57.5		44.8	59.2	-	-	52.0
	(Fine-	13.5	23.1	55.8	-	30.8		35.3	49.0	68.4	-	50.9		49.0	43.4	48.6	-	47.0
	tuning)	14.2	21.5	44.0	52.5	33.1		34.6	44.1	55.6	59.6	48.5		40.2	35.5	42.5	38.8	39.3
	Faster RCNN (Retrain)	64.0	-	-	-	64.0	CIFRCN NP	56.8	-	-	-	56.8	Ours	45.5	1.7	5.5	2.1	13.7
		65.2	73.2	-	-	69.2		40.4	68.8	-	-	54.6		43.0	53.4	6.5	5.2	27.0
		66.2	71.3	77.3	-	71.6		38.5	50.9	69.5	-	53.0		42.8	48.8	67.4	5.6	41.1
		65.1	70.4	76.4	67.8	69.9		33.7	44.6	56.8	51.8	46.7		52.8	50.7	63.1	57.9	56.1
	Faster	58.3	-	-	-	58.3	CIFRCN	58.1	-	-	-	58.1	IDWCF	49.2	-	-	-	49.2
	RCNN	33.5	21.0	-	-	27.3		39.0	24.6	-	-	31.8		44.7	15.7	-	-	30.2
	(Fine-	20.1	11.9	26.4	-	19.5		29.9	18.5	29.6	-	26.0		42.4	13.1	14.0	-	23.2
COCO 2017	tuning)	16.8	9.3	9.4	31.4	16.7		29.0	14.5	14.6	33.3	22.9		38.0	12.6	11.9	21.0	20.9
	Faster	58.4	-	-	-	58.4		55.6	-	-	-	55.6		46.5	2.9	0.1	0.2	12.4
	RCNN (Retrain)	56.1	27.4	-	-	41.8	CIFRCN	38.3	24.1	-	-	31.2	Ours	18.8	16.9	0.1	0.2	9.0
		54.9	26.6	30.8	-	37.4	NP	26.2	18.6	27.2	-	24.0		10.8	10.1	20.3	0.1	10.3
		54.8	26.3	28.0	37.2	36.6		26.5	15.1	15.5	32.2	22.3		38.4	15.9	12.3	26.9	23.4

Experiment Results

The results of class-incremental detection on Pascal VOC 2007 and MSCOCO 2017. Gray region means that the results of these groups can only be predicted in our model.

Ablation Study

The Effect of bfMSE

Step	bfMSE							MSE			Sten	Step \mathcal{L}_{pd}^{zsc} without						nout <i>L</i>	zsc		
	\mathcal{G}_1	\mathcal{G}_2	\mathcal{G}_3	\mathcal{G}_4	mAP	\mathcal{G}_1	\mathcal{G}_2	\mathcal{G}_3	\mathcal{G}_4	mAP	Sicp	\mathcal{G}_1	\mathcal{G}_2	\mathcal{G}_3	\mathcal{G}_4	mAP	\mathcal{G}_1	\mathcal{G}_2	\mathcal{G}_3	\mathcal{G}_4	mAP
1	45.45	1.65	5.47	2.10	13.67	38.88	1.72	4.15	1.71	11.61	1	45.45	1.65	5.47	2.10	13.67	36.06	1.8	2.54	1.62	10.5
2	42.96	53.42	6.49	5.22	27.02	28.12	51.71	5.98	5.67	22.87	2	42.96	53.42	6.49	5.22	27.02	29.99	50.59	6.81	5.08	23.12
3	42.82	48.78	67.38	5.59	41.14	26.86	44.71	58.31	2.51	33.10	3	42.82	48.78	67.38	5.59	41.14	25.16	44.89	58.6	2.85	32.88
4	52.79	50.73	63.05	57.86	56.11	42.99	46.27	52.56	50.00	47.96	4	52.79	50.73	63.05	57.86	56.11	42.86	48.43	56.21	50.05	49.39

Experiment Results

The effect of PD loss

Thanks

