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Problem Set-up

Gaussian Process (GP):

Regression problem y = f(x) + ε, where x ∈ RD and ε ∼ N (0, σ2).

Objective: learn f from a training set D = {X, y}ni=1

- f ∼ GP
(
m(x), k(x, x

′
)
)

Training: maximise the log-marginal likelihood

log p(y|X) = −1

2
yTC−1y − 1

2
log |C| − n

2
log(2π)

where C = K + σ2I.

Cost: O(n3) (because of the inversion and determinant of C)
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Distributed Gaussian Process

Distributed GP reduces the cost of the standard GP by distributing the
training process.

D is divided into M partitions D1, . . . ,DM , (called experts)

Partitions are called experts

The predictive distribution of the i’th expert Mi and test input x∗ is
pi(y

∗|Di, x∗) ∼ N (µ∗i ,Σ
∗
i ),

µ∗i = kTi∗(Ki + σ2I)−1yi,

Σ∗i = k∗∗ − kTi∗(Ki + σ2I)−1ki∗.
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Aggregation in Local Approximation

The local Gaussian experts are conditionally independent.
I CI assumption

The predictive distribution of DGP is

p(y∗|D, x∗) ∝
M∏
i=1

pβii (y∗|Di, x∗).

The weights β = {β1, . . . , βM} describe the importance of the
experts.

The ensembles based on CI return sub-optimal solutions.
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Aggregating Dependent Experts

Instead of the Gaussian experts
M = {M1, . . . ,MM}, we
define clusters of correlated
experts, C = {C1, . . . , CP },
P �M .

Aggregating the experts at each
cluster leads to a new layer of
experts, K = {K1, . . . ,KP },
which are conditionally
independent given y∗.
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Dependency Detection

let µ∗M = [µ∗1, . . . , µ
∗
M ]T be a nt ×M matrix that contains the local

predictions of M experts at nt test points.

Assumption: The joint distribution of the experts predictions is
multivariate normal.

Gaussian graphical model:

p(µ∗M|h,Ω) ∝ exp

{
−1

2
(µ∗M)T Ω µ∗M + hTµ∗M

}
.

Ω is the precision matrix and encodes the conditional dependency.

Ω is calculated using the GLasso method

Ω̂ = arg max
Ω

log |Ω| − trace(SΩ)− λ ‖Ω‖1 .
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Experts clustering

The precision matrix is used to find the clusters of experts set C.

Each cluster Ci contains strongly dependent experts.

We apply spectral clustering (SC) to find C = {C1, . . . , CP }.
SC makes use of the similarity matrix (here Ω).

To aggregate the experts at each cluster, we use GRBCM method
that leads to K = {K1, . . . ,KP }.
New experts are conditionally independent.
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Experts clustering
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Experiments-Synthetic Example
0.

00
0.

02
0.

04
0.

06
0.

08
0.

10

Number of Experts: M

S
M

S
E

10 20 30 40 50

DGEA PoE GPoE BCM RBCM GRBCM

−2
.0

−1
.8

−1
.6

−1
.4

−1
.2

−1
.0

Number of Experts: M
M

S
LL

10 20 30 40 50

DGEA PoE GPoE BCM RBCM GRBCM

January 13, 2021 ICPR 2020 9



Experiments- Realistic Data-sets
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Summary

We proposed a novel approach that leverages the dependencies between
experts and improves the prediction quality. It

uses an undirected graphical model to detect strong dependencies
between experts

defines clusters of interdependent experts

provides consistent results when n→∞.

January 13, 2021 ICPR 2020 11


	Instructions

