

A New Convex Loss Function For Multiple Instance Support Vector Machines

Sang-Baeg Kim Department of Industrial Engineering Sungkynkwan University Suwon, South Korea Email: kimsb01@skku.edu Jung-Man Bae Al Vision Analytics Devision KAI Networks Co. LTD Suwon, South Korea Email: jm.bae@kai-networks.com

Introduction

Mathematical Models

Experiments

Conclusions

Introduction

MIL; Multiple Instance Learning

Weakly Supervised Learning

- Training instances are arranged in sets, called bags
- Labels are provided for entire bags, not for instances
- Task: Find a bag classifier to predict the labels of unseen bags

Applications of MIL

- Drug Activity Prediction Problem: the first MIL Model (1997)
- Content Base Image Retrieval
- Computer Aided Diagnosis (from images)
- Semantic Image Segmentation
- Anomaly Detection in Videos
- Video Classification

Introduction

Formulations of MIL

- SVM Formulations
- mi-SVM, MI-SVM
- ∝SVM
- RMI-SVM

WR-SVM

- A New SVM based on the Witness Rate(WR) of a positive bag
- Maximizing the minimum WR among positive bags
- Estimation of WR of a positive bag using $tanh(\cdot)$ for unknown labels

Contributions of WR-SVM

- Proposing a new convex loss function for MIL
- Providing a very simple neural network framework for MIL

Mathematical Models

WR-SVM(1)

Binary MIL Model: Training dataset: $\{(X_i, Y_i)\}_{i=1}^N$

- $X_i = \{x_1^i, x_2^i, \dots, x_{M_i}^i\}$: bag i
- $x_i^i \in \mathbb{R}^d$: instances of bag *i*
- $Y_i \in \mathcal{Y} = \{-1, 1\}$ is the known label of the bag X_i .
- The label y_j^i of an instance x_j^i is unknown, $y_j^i \in \{-1,1\}$

Standard MIL Assumptions

- If $Y_i = 1$, then $y_j^i = 1$ for at least one $j \in \{1, \dots, M_i\}$.
- If $Y_i = -1$, then $y_j^i = -1$ for all $j \in \{1, \dots, M_i\}$.

Mathematical Models

WR-SVM(2)

WR-SVM • The Witness Rate (WR) ρ_i of the *i*-th positive bag is defined by $\rho_i = \frac{1}{M_i} \sum_{j=1}^{M_i} \mathbb{1}_{\{y_i^i = 1\}}$ • WR-SVM maximizes $\min_{i:Y_i=1} \{\rho_i\}$ $\min_{\substack{y_{i}^{i}, w, b, \xi_{i}^{i}}} \frac{\lambda}{2} \|w\|^{2} + \frac{1}{N} \sum_{i:Y_{i}=-1} \xi_{j}^{i} + \frac{1}{N} \frac{1}{\min_{i:Y_{i}=1} \{\rho_{i}\}}$ subject to $-w^T x_i^i - b \ge 1 - \xi_i^i, \qquad \forall i: Y_i = -1$ $\sum_{j} \frac{y_j^{i+1}}{2} \ge 1, \forall i: Y_i = 1$ $y_i^i \in \{-1,1\}, \forall j, i: Y_i = 1$ $\xi_i^i \ge 0, \forall i: Y_i = -1$

Mathematical Models

WR-SVM(3)

Relax the integer variable y_j^i to be a continuous variable • Approximate the label y_j^i of an instance x_j^i in positive bags with a continuous variable $z_j^i = \tanh(w^T x_j^i + b) \in (-1,1)$

• Using this relaxation, WR can be approximated as follows:

$$\hat{\rho}_{i} = \frac{1}{M_{i}} \sum_{j=1}^{M_{i}} \mathbb{1}_{\{z_{j}^{i} \ge z_{0}\}} z_{j}^{i}$$

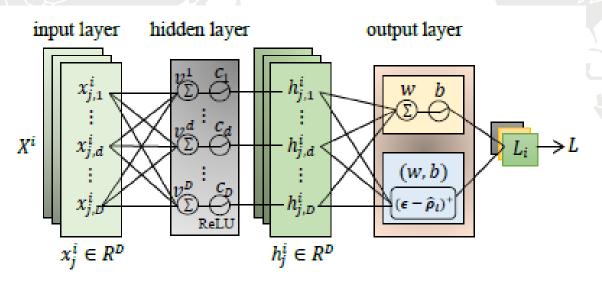
• Loss function *L* of WR-SVM:

$$L = \frac{\lambda}{2} \|w\|^2 + \frac{1}{N} \sum_{i:Y_i = -1} \sum_{j=1}^{M_i} (1 + w^T x_j^i + b)_+ + \frac{1}{N} \sum_{i:Y_i = 1} (\epsilon - \hat{\rho}_i)_+$$

Experiments

Deep WR-SVM

- DNN architecture of WR-SVM
- The loss function *L* is convex.
- MIL pooling function for WR-SVM is $\hat{\rho}_i > 0$.
- Deep WR-SVM need not the MIL Pooling Layer.
- The first Deep MIL without MIL Pooling Layer.



Experiments

Performance of Deep WR-SVM

Video Datasets (30 classes)

- WIDER bags: sampled WIDER images from 30 classes (class 0class 29) to make artificial video bags
- CCV + WIDER bags
- HMDB51
- UCF-101

Classifier	Accuracy(%)			
	WIDER	CCV+	HMDB51	UCF-101
mi-SVM	25.42	23.24	21.33	19.41
MI-SVM	27.73	28.45	25.46	23.72
alter \propto SVM	35.33	31.35	29.37	33.30
Single-granular \propto SVM	37.45	34.85	31.65	28.75
RMI-SVM	37.10	38.15	35.78	34.26
Ensemble of CNNs	68.32	58.42	64.75	66.37
AWR-SVM	71.65	69.53	68.71	65.66

Conclusions

Contributions of Our Works

• We introduce a new convex formulation, WR-SVM, of the MIL problem based on the WRs of positive bags.

• Our NN framework of WR-SVM is one of the simplest NN models for MIL.

Further Research

- Test WR-SVM for larger classes and develop efficient bag generators and
- Optimal DNN architectures (i.e., depths and widths) for WR-SVM.

Thank you for attention.

