

DEEP RECURRENTCONVOLUTIONAL MODEL FOR AUTOMATED SEGMENTATION OF CRANIOMAXILLOFACIAL CT SCANS

F. Murabito, S. Palazzo, F. Proietto Salanitri, F. Rundo, U. Bagci,

D. Giordano, R. Leonardi, C. Spampinato

Motivation

- Craniomaxillofacial malformations due to abnormal development comprise over one-third of all congenital birth defects.
- CT and CBCT are the most common imaging modalities for diagnosis and treatment of CMF disorders.
- Segmentation and Landmarking are the upstream steps for any subsequent clinical evaluation

Motivation

- Challenge of automatically CMF CT segmentation:
 - Multiple structures
 - Irregular and complex shape patterns
 - Lack of contrast in joints
 - Significant morphological variations among different patients

State of the art

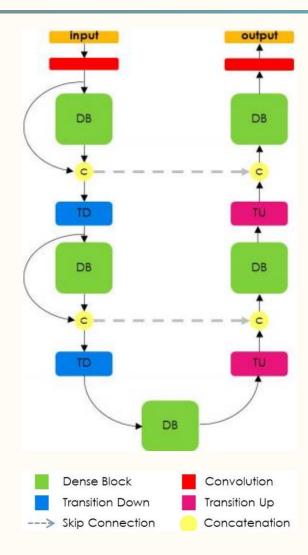
- Before DL: atlas-guided methods, with a preliminary registration step
- After DL: Encoder-decoder fully convolutional networks (several variants)

Problems

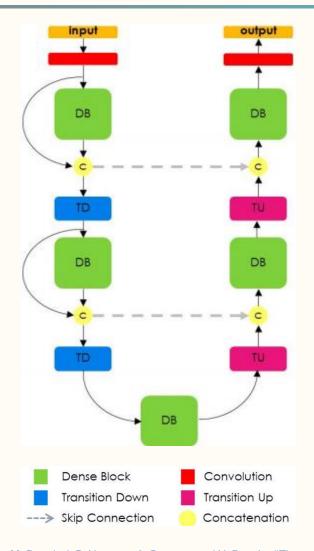
- Large appearance variability of CMF CT scans
- Limited generalization capabilities

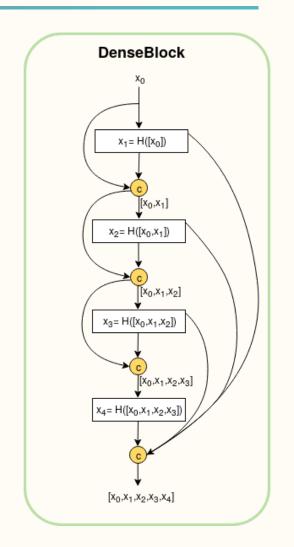
The Tiramisu Network [1]

+



The Tiramisu Network [1]

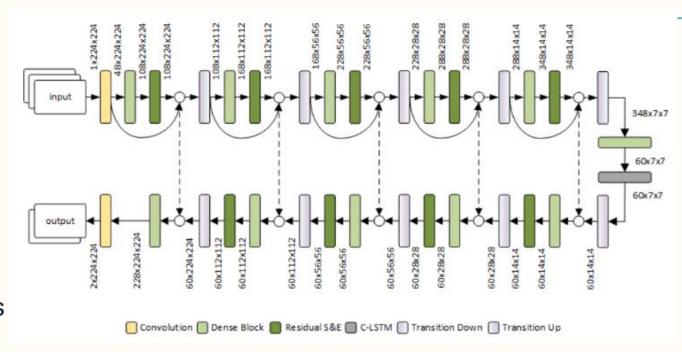




+

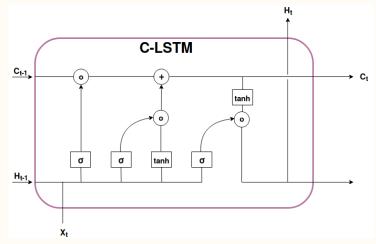
Method

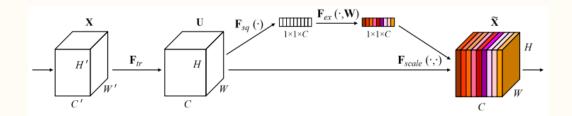
- Fully convolutional
 DenseNet following U-Net architecture
- C-LSTMs at bottleneck to exploit spatial axial correlation of consecutive scan slices
- Residual squeeze-andexcitation layers to emphasize relevant features and improve representational power



Method

Unidirectional Convolutional LSTM





Residual Squeeze and Exicitation SE Calibration X[1x1xC] = F_{sq}(I) O[1x1xC] = F_{ex}(X)] Residual

Squeeze-and-Excitation block [2]

[2] J. Hu, L. Shen, and G. Sun, "Squeeze-and-excitation networks," arXiv preprint arXiv:1709.01507, vol. 7, 2017

Performance Evaluation - Datasets

MandibleSet

- 32 CT scans and 20 CBCT scans
- Mandible segmentation
- Patients with no clinically obvious facial asymmetries and no prior surgery in the head and neck

MICCAI Head and Neck 2015 Challenge dataset

- CT scans of 48 patients with manual segmentations of several anatomical regions
- Challenging because of image artifacts and different disease

AirwaysSet (proposed in this paper)

- Subset of MandibleSets
- 19 CT scans (one per subject)
- Nasal cavity and pharyngeal areas segmentation

Metrics

Dice Similarity coefficient

$$DSC = \frac{2\sum_{i}^{N} p_{i}g_{i}}{\sum_{i}^{N} p_{i}^{2} + \sum_{i}^{N} g_{i}^{2}}$$

N number of pixels

 p_i and g_i output of the model and ground truth at pixel i

Training procedure

- 3 consecutive slices as input processed individually, normalized to 0 mean and unitary standard deviation
- Training for 50 epochs on the MandibleSet and optimized with RMSProp
- Dice Score Coefficient computed on the central slice was used for backpropagation

Model	Pure DL	DSC (%)
3D-UNet [24] Tiramisu [7] Ours	Yes Yes Yes	87.34 91.20 93.41
Robust segmentation [26] AnatomyNet [3] Best MICCAI 2015 [27] Hierarchical Vertex [25]	No, post-processing No, post-processing No, landmark-guided No, shape prior	91.00 92.50 93.90 94.00

Performance on MICCAI Head and Neck
 2015 Dataset

 DSC performance when finetuned(second columns) and trained from scratch on the CBCT part of MandibleSet and on the AirwaysSet

Model	Fine-Tuned (%)	Trained from scratch (%)
	CBC	Γ - Mandible set
3D-UNet [24]	80.32	73.36
Tiramisu [7]	83.74	76.78
Ours	89.25	80.31
		Airways
3D-UNet [24]	81.82	77.30
Tiramisu [7]	84.02	80.21
Ours	93.31	85.12

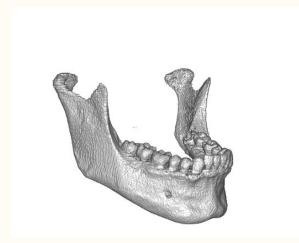
Ablation studies

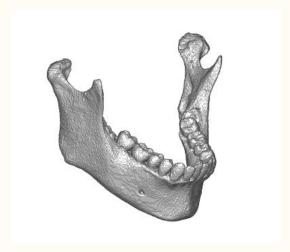
Model	DSC (%)
[7]	92.81
Res-SE	95.32
C-LSTM	95.04
Bi-C-LSTM	94.81
Res-SE + C-LSTM	96.52
Res-SE + Bi-C-LSTM	95.03

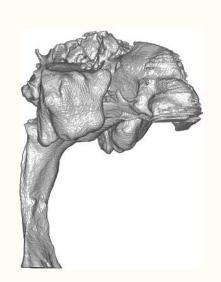
Ablation studies

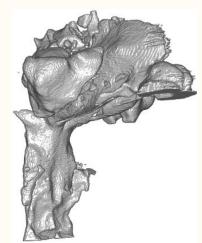
Model	DSC (%)
[7]	92.81
Res-SE	95.32
C-LSTM	95.04
Bi-C-LSTM	94.81
Res-SE + C-LSTM	96.52
Res-SE + Bi-C-LSTM	95.03

+









Conclusion

We propose:

- A Deep encoder-decoder network for automated segmentation of CMF structures.
 - Improved segmentation performance
 - > Enhanced generalization capabilities to multiple CMF structures
- Two new Datasets
 - MandibleSet containing multiple mandible segmentations
 - > AirwaysSet containing multiple nasal cavity and pharynges segmentations