
Malware Detection by Exploiting Deep Learning
over Binary Programs

Panpan Qi*, Zhaoqi Zhang*, Wei Wang* and Chang Yao†

*School of Computing, National University of Singapore, Singapore
†Institute of Computing Innovation, Zhejiang University, China

Outline

1. Motivation

2. Related Work

3. Contribution

4. Preliminary

5. Methodology

6. Experiments

7. Conclusion

2

Motivation

• Malware (malicious software) remains the most popular and damaging attack

vector, costing hundreds of billions in damage [1].

• Malware evolves rapidly, with reports showing that 99% disappear after 58

seconds [2].

• Traditional machine learning models heavily depend on feature engineering

and could be easily deceived by hackers.

• In practical applications, the anti-virus industry prefer to increase the recall (i.e.

true positive rate) while maintaining a low false positive rate (usually less than

0.1%).

▪ Recall: ratio of the malware correctly identified as malware.

▪ False positive rate: ratio of benign software incorrectly identified as malware.

3

Related Work

Commercial Antivirus Solutions

• McAfee, Symantec, TrendMicro, and online services like VirusTotal etc.

• Low accuracy and high memory overhead

▪ Too much dependence on large databases of malware signatures (a regular

expression string that can be matched by scanning the malware).

▪ Malware signatures are easily bypassed by encrypting the payload, or by

other obfuscation techniques like polymorphism and metamorphisms.

4

Research work

• Feature engineering

Static analysis: features are directly obtained without running it (e.g. opcodes, printable strings,

n-grams, system API calls, control flow graph, import tables etc.).

▪ Advantage

• It does not require complex or expensive setup for collecting, and is able to avoid the

complications caused by running samples.

▪ Limitation

• Static analysis are more vulnerable to code obfuscation.

Related Work

5

Research work

• Feature engineering

Dynamic analysis: features are obtained by running the sample in an isolated

environment and monitoring its run-time behavior. (e.g. instructions and system call

sequences etc.)

▪ Advantage

• Intuitively, malicious behavior is the best indicator of a malicious sample.

▪ Limitations

• It requires much computational resource as the analysis must run long

enough to capture meaningful behavior;

• Certain malwares can detect the dynamic execution and prevent itself from

exhibiting any malicious behavior.

Related Work

6

Research work

• Classifiers

Traditional Machine learning models

▪ Decision Trees (DT)

▪ Naive Bayes (NB)

▪ Boosted DT

▪ Boosted NB

▪ Support vector machines (SVMs)

▪ ……

Deep learning models

▪ MLP(Multilayer Perceptron)

▪ CNN(Convolutional Neural Network)

▪ Autoencoder based Neural Network

▪ LSTM

▪ ……

Related Work

7

• Existing research works using machine learning claim very high detection rates of over

90%, far better than incumbent antivirus products.

• Failed to gain traction in the industry because

▪ Malware evolves rapidly as malware creators find new ways to exploit or to

evade existing defense.

▪ Although most models achieve less than 1% false positive rates, these rates

are still considered too high to be useful in practice.

Related Work

8

Contribution

• Proposed an end-to-end malware detection framework based on deep learning techniques,

which achieves the best performance among existing deep learning based methods.

• Proposed an effective loss function for optimizing recall with a fixed tiny false positive rate.

• Conducted experiments on a real large dataset to confirm the effectiveness of the proposed

feature learning framework and loss function for malware detection.

9

Preliminary: PE format DOS Header

DOS STUB

COFF Header

Standard COFF Header

Windows Specific Fields

Data Directories

.text Section Header

.bss Section Header

.rdata Section Header

…

.debug Section Header

.text Section

.bss Section

.rdata Section

…

.debug Section

Optional

Header

The Portable Executable (PE) format is a file format for executables,

object code, DLLs, FON Font files, and others used in Windows

operating systems.

PE Header

• Consists of DOS header, DOS STUB, COFF Header and optional

Header

• Contains the most basic and meaningful information about the file

▪ the target machine types

▪ the number of the sections

▪ initial stack size

▪ preferred base address

▪ operating system version

▪ …

10

Preliminary: PE format
Section

• Contains the main content of the file, including code, data, resources

and other executable files.

• Vary in length (usually very long) and the information is scattered

throughout.

• Previous work does not pay enough attention to the section part.

▪ N-gram

▪ Byte entropy histogram

▪ String information

▪ …

DOS Header

DOS STUB

COFF Header

Standard COFF Header

Windows Specific Fields

Data Directories

.text Section Header

.bss Section Header

.rdata Section Header

…

.debug Section Header

.text Section

.bss Section

.rdata Section

…

.debug Section

Optional

Header

11

Methodology

An end-to-end model for malware detection

PE sample

Header feature

extractor
Autoencoder

Concatenated feature

Neural Decision

Trees

Label

Header feature
Feature

Learning

Classification

Section feature

PE header Section 1 Section 2 Section n…

Optimized

loss

function

12

Input

▪ Raw byte sequence of the PE header

Embedding layer

▪ Embeds the raw bytes into a continuous

and distributed representation

Gated Convolution layer

▪ 𝑋𝐴⨂𝜎 𝑋𝐵

▪ Provides a mechanism to learn, select and

pass along the important and relevant

information.

Global Max-pooling layer

▪ Produces the activation(the header feature)

regardless of the location of the detected

features.

Header Feature Extraction

In
p

u
t
H

e
a

d
e

r
s
h

a
p

e
:
(4

0
0

0
,
1

)

(250, 256)(4000, 8)

(250, 256)

(250, 256)

Header feature

Convolutional layer

Multiply layer

Embedding layer

Max pooling layer

Sigmoid Activation layer

(256,)

Input

▪ Multiple executable sections in a PE

sample

Encoding:

▪ Convolutional layer + 1D Max pooling

layer

Decoding:

▪ Convolutional layer + 1D Up sampling

layer

Loss function

▪ MSE(Mean squared error):

𝐿 𝑋S, 𝑍 =
1

𝑛
σ𝑖=1
𝑛 𝑋S𝑖 − 𝑍𝑖

2

where 𝑋S is the input sections and 𝑍 is the

observed output.

Section Compression

In
p

u
t

s
e
c
ti

o
n

s
 s

h
a

p
e
:

(1
0

2
4
0
,

8
)

(10240, 256)

(2560, 256)

(640, 256) (640, 256)

(2560, 256)

(10240, 256)

O
u

tp
u

t
s

h
a

p
e

:
(1

0
2
4
0
,

8
)

Section feature

(256,)

Encoder Decoder

Up Sampling layerConvolutional layer Max pooling layer

A differentiable version of decision tree

▪ Designed by Kontschieder et al.[3]

▪ Follows the classical full binary tree structure.

For each decision node 𝒅 ∈ 𝓓

▪ Holds a decision function, the probability that a

sample reaches node 𝑑 and be sent to the left

subtree.

𝐷𝑑 𝑋𝑇 = 𝜎 𝑓𝑑 𝑋𝑇 ∈ 0, 1

where 𝑓𝑑 is the transfer function, 𝑓𝑑 𝑋𝑇 = 𝑊𝑇𝑋𝑇 +

𝑏𝑇.

For each leaf node 𝒍 ∈ 𝓛

▪ Holds a probability distribution 𝑃𝑙 over the labels.

▪ 𝑃𝑙𝑌 stands for the probability for the samples in leaf

𝑙 predicted to be label 𝑌.

Neural

Decision

Trees

XT

Tree KTree 2Tree 1

…

…

…

Dense

Batch Normalization

Dropout

Concatenated Feature

Neural Decision Trees

15

▪ The probability of a sample predicted as label 𝑌 by tree 𝑘 is

ℙ𝑇𝑘 𝑌 𝑋𝑇 =෍

𝑙∈ℒ

𝑃𝑙𝑌ෑ

𝑑∈𝒟

𝐷𝑑 𝑋𝑇
𝕀𝑙𝑒𝑓𝑡𝐷𝑑 𝑋𝑇

𝕀𝑟𝑖𝑔ℎ𝑡

where 𝐷𝑑 𝑋𝑇 = 1 − 𝐷𝑑 𝑋𝑇 , 𝕀𝑙𝑒𝑓𝑡 is the indicator function for the

sample that will be sent to the left subtree.

e.g.

ℙ𝑇𝑘 𝑌 = 0 𝑋𝑇 = 0.2 × 0.1 + 0.3 × 0.9 = 0.29

ℙ𝑇𝑘 𝑌 = 1 𝑋𝑇 = 0.8 × 0.1 + 0.7 × 0.9 = 0.71

Y=0 Y=1

Tree k with depth 1

0.1 0.9

0.2
0.8 0.3

0.7

Neural Decision Trees

16

Bagging (Neural Random Forest)

▪ The prediction is made by averaging the outputs of all the trees

ℙ 𝑌 𝑋𝑇 =
1

𝐾
෍

𝑘=1

𝐾

ℙ𝑇𝑘 𝑌 𝑋𝑇

▪ Loss function: binary cross entropy

𝐿𝑁𝐷𝑇 𝑋𝑇, 𝑦 = −(𝑦𝑙𝑜𝑔(ℙ 𝑌 = 1 𝑋𝑇 + 1 − 𝑦 log ℙ 𝑌 = 0 𝑋𝑇)

Neural Decision Trees

17

Boosting (Neural Gradient Boosting Decision Trees)

▪ The value of a sample predicted by tree 𝑘 (a regression tree) is

ℙ𝑇𝑘(𝑋𝑇) =෍

𝑙∈ℒ

𝑤𝑙ෑ

𝑑∈𝒟

𝐷𝑑 𝑋𝑇
𝕀𝑙𝑒𝑓𝑡𝐷𝑑 𝑋𝑇

𝕀𝑟𝑖𝑔ℎ𝑡

e.g.

ℙ𝑇𝑘(𝑋𝑇) = −1.2 × 0.1 + 0.1 × 0.9 = −0.03

Tree k with depth 1

0.1 0.9

- 1.2 0.1

Neural Decision Trees

18

Neural Decision Trees

Boosting (Neural Gradient Boosting Decision Trees)

Neural Gradient Boosting Decision Tree Algorithm

19

Logistic regression

▪ Apply logistic regression on all the outputs of the decision trees

▪ Enable a more flexible way of utilizing the generated trees

▪ The final output is

𝜎(𝑊𝐿𝑅𝑋𝐿𝑅 + 𝑏𝐿𝑅)

where 𝑋𝐿𝑅 denotes the outputs of all the single trees and 𝜎(𝑥) is the sigmoid

function.

▪ The loss function is also taken as the binary cross entropy

Loss function of the model:

𝐿 = 𝐿𝐴𝐸 𝑋𝑆, 𝑍 + 𝐿𝑁𝐷𝑇 𝑋𝑇 , 𝑦 + 𝐿𝐿𝑅(𝑋𝐿𝑅, 𝑦)

Neural Decision Trees

20

▪ To maximize recall with the restriction that false positive rate ≤ 0.1%.

• Recall: ratio of the malware correctly identified as malware.

𝑇𝑃𝑅 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
=

𝑡𝑝

|𝑌+|

• False positive rate: ratio of benign software incorrectly identified as

malware.

𝐹𝑃𝑅 =
𝑓𝑝

𝑓𝑝 + 𝑡𝑛
=

𝑓𝑝

|𝑌−|

▪ The maximum 𝑇𝑃𝑅 with at most 𝛼 𝐹𝑃𝑅 problem can be defined as

max
𝑓

𝑡𝑝

|𝑌+|
𝑠. 𝑡.

𝑓𝑝

|𝑌−|
≤ 𝛼

▪ We can rewrite 𝑡𝑝 and 𝑓𝑝 by the zero-one loss:

m𝑎𝑥
𝑓

1 −
σ𝑖∈𝑌+ 𝑙01 𝑥𝑖 , 𝑦𝑖

|𝑌+|
𝑠. 𝑡.

σ𝑖∈𝑌− 𝑙01 (𝑥𝑖 , 𝑦𝑖)

|𝑌−|
≤ 𝛼

True

Predicted

Positive Negative

Positive tp fp

Negative fn tn

Loss Function Optimization

Confusion matrix

▪ Since zero-one loss is non-convex and not smooth, we lower bound 𝑡𝑝 and upper bound 𝑓𝑝 by its

approximate upper bound, the log loss. :

m𝑖𝑛
𝑓

σ𝑖∈𝑌+ 𝑙 𝑥𝑖 , 𝑦𝑖
|𝑌+|

𝑠. 𝑡.
σ𝑖∈𝑌− 𝑙 (𝑥𝑖 , 𝑦𝑖)

|𝑌−|
≤ 𝛼

▪ Applying Lagrange multiplier theory, the optimized loss function is

𝐿 =
σ𝑖∈𝑌+ 𝑙 𝑥𝑖 , 𝑦𝑖

𝑌+
+𝑚𝑎𝑥 0, 𝜆

σ𝑖∈𝑌− 𝑙 𝑥𝑖 , 𝑦𝑖
𝑌−

− 𝛼

Loss Function Optimization

Loss for
positive samples

Loss for
negative samples

Experiments

Data Summary

▪ Provided by SecureAge, with granularity at the monthly level.

▪ SecureAge deployed 12 commercial antivirus engines that

are continuously scanning data from the endpoints.

• Positive: num of engines >= 4

• Negative: num of engines = 0

Summary of the data

23

Dataset Positive samples Negative samples

February 110656 80185

March 100651 92097

April 58394 48595

May 42635 87858

Experimental Results

▪ The proposed model achieved the best AUC score, and recall when fpr <= 0.1% among all the models without

hand-crafted features

▪ Models with the derived optimized loss function generally outperform those without the optimized loss function.

Training Dataset Test Dataset Model
Without optimized loss function With optimized loss function

AUC (%) Recall (%) AUC (%) Recall (%)

February March

MalConv [4] 95.45±0.34 33.58±16.21 94.79±0.32 53.17±4.37

ConvNet [5] 96.21±0.17 45.11±3.88 94.34±0.60 49.92±3.69

EntropyNet [6] 91.61±0.22 33.88±9.13 88.13±0.73 41.52±4.38

Proposed Model 96.47±0.20 56.14±3.65 96.40±0.19 57.52±2.95

March April

MalConv 98.50±0.12 50.67±11.75 98.21±0.31 57.41±9.74

ConvNet 98.82±0.12 63.67±5.50 98.27±0.70 67.39±5.69

EntropyNet 95.70±0.32 24.53±6.76 93.95±0.48 49.68±8.09

Proposed Model 99.16±0.04 71.54±3.32 99.12±0.07 75.25±1.62

April May

MalConv 97.95±0.36 52.28±8.12 94.02±1.48 58.55±2.43

ConvNet 98.33±0.26 55.91±2.68 96.66±0.73 56.96±3.45

EntropyNet 90.96±0.96 31.33±3.13 81.94±2.33 35.23±3.24

Proposed Model 98.60±0.20 70.29±1.03 98.43±0.35 70.69±0.93

25

(a) ROC curves of MalConv

(b) ROC curves of ConvNet

(c) ROC curves of EntropyNet

(d) ROC curves of Proposed Model

Experimental Results

▪ The proposed model achieved the best AUC score, and recall when fpr <= 0.1% among all the models without

hand-crafted features

▪ Models with the derived optimized loss function generally outperform those without the optimized loss function.

Experimental Results

Autoencoder Neural Decision Trees Logistic Regression AUC (%) Recall (%)

No No Yes 98.89±0.12 68.99±1.51

Yes No Yes 98.86±0.05 69.33±1.75

Yes Neural Random Forest No 98.70±0.19 69.89±1.86

Yes Neural GBDT No 98.68±0.26 69.75±2.44

Yes Neural Random Forest Yes 98.92±0.11 70.10±1.53

Yes Neural GBDT Yes 98.60±0.20 70.29±1.03

Ablation study

▪ The addition of each component brings an improvement to the performance.

Conclusion

• We propose a hybrid end-to-end framework for malware detection with an autoencoder

and the Neural Decision Trees.

• We derive an optimized loss function to improve recall when fp rate ≤ 0.1%;

• The framework can be regarded as a further exploration to minimize the use of the

domain knowledge in malware detection task.

• Experimental results demonstrate that the proposed framework is effective for malware

detection.

27

References

[1] John F Gantz, Richard Lee, and Alejandro Florean. The Link between Pirated Software and Cybersecurity Breaches. National University of

Singapore & IDC, 2014.

[2] Verizon. 2016 Data Breach Investigations Report. Technical Report 1, 2016.

[3] Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota Bulo.Deep neural decision forests. InProceedings of the IEEE

international conferenceon computer vision, pages 1467–1475, 2015.

[4] Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, and Charles Nicholas. Malware detection by eating a whole

exe. arXiv preprint arXiv:1710.09435, 2017.

[5] Marek K čá , O ř j Šv , Martin Bálek, and Otakar J š k. Deep convolutional malware classifiers can learn from raw executables and

labels only. 2018.

[6] Gibert, D., Mateu, C., Planes, J., Vicens, R.: Classification of malware by using structural entropy on convolutional neural networks. In:

Thirty-Second AAAI Conference on Artificial Intelligence (2018)

28

THANK YOU

29

