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Target Distribution

Which is better target label distibution?
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one-hot
multi-hot 1 1 0 1 0
label smoothing 0.9 0.025 0.025 0.025 0.025

- Soft Label _ : ' : : '
ideal distribution 045 0.1 005 035 005

Soft is better than Hard:

- hard: over-confidence (one-hot)

- soft: better performance (label smoothing) , more information (knowledge distillation)
- soft: robust to noise-label or long-tail

Hard Label




Stochastic Label Refinery

Each round of SLR:
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Use out-of-fold (oof) pseudo-label to refine the target label distribution by simply weighted average

out-of-fold (oof): https://machinelearningmastery.com/out-of-fold-predictions-in-machine-learning/



Stochastic Label Refinery

Better Trained Models
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Better Target Labels

/ out-of-fold > train
/ pseudo-label > inference
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weighted average K-fold models

Using better target label distribution we can get better models by multiple rounds SLR
(Self-distillation)

- K-fold teachers and K-fold students using the same network architecture
- Each round of K-fold is divided differently



Experiments

In CIFAR-10:

Using blending method in self knowledge distillation to get better target label ditribution (SLR-a/e):
We denote that better target label distribution leads to better socre.

Method Top-1 accuracy
VGG16 [37] 02.64%
ResNet101 [38] 93.75%
DenseNet121 [39] 05.04%
PreResNet56 [40] 05.51%
SE-ResNet56 [6] 05.87%
SE-ResNet56 [6] + AA [3] 96.16%
SE-ResNet56 [6] + AA [3] + Label Smoothing [12] 06.16%
SE-ResNet56 [6] + AA [3] + SLR 06.41%
SE-ResNet56 [6] + AA [3] + SLR-a 06.44%
SE-ResNet56 [6] + AA [3] + SLR-¢ 06.42%
SE-ResNet56 [6] + AA [3] + SLR-ae 96.53 %




Experiments

Using SLR we get SOTA in DeepDR Diabetic Retinopathy Dataset

Method Quadratic Weighted Kappa

Baseline (w/o tricks)
Baseline (w/ tricks)

SWA [34]

OHEM [20]

Knowledge Distillation [27]
Label Refinery [16]
Stochastic Label Refinery

0.8036+0.0214

Method Public Test

Private Test

0.824710.0125
0.81191+0.0234
0.8061£0.0174
0.8128+0.0100
0.752710.0152

Ours
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0.9088
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0.8348-+0.0053
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(b) vanilla label refinery

Stochastic Label Refinery
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(c) stochastic label refinery
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‘ improve from high baseline with
multiple training tricks

mm) better than vanilla label refinery



How does SLR works?

* As aregularization strategy :

just like label smoothing (avoid over-confidence)
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* As alabel correction method : Noise Ratio
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