
Attention as Activation

Yimian Dai1 Stefan Oehmcke2 Fabian Gieseke2,3

Yiquan Wu1 Kobus Barnard4

1 Nanjing University of Aeronautics and Astronautics
2 University of Copenhagen
3 University of Münster
4 University of Arizona

December 10, 2020



Background

Attention Models Achieve SOTA Performance in Many Tasks:

Task SOTA Attention Model

Image Classification SENet [1], ViT-H/14 [2]
Semantic Segmentation ResNeSt [3]
Image Generation Image Transformer [4]
Medical Image Segmentation PraNet [5]

Machine Translation Transformer+BT [6]
Language Modelling Transformer-XL [7]
Question Answering LUKE [8]
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Background

It raises a natural question:

• The more attention modules, the better the performance?

If yes, then

• How to add more attention modules, after all SENet has
already implemented attention modules in every block?
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Background

Disassemble a Residual Block:
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1. Conv => Deformable Kernels [9]

2. ReLU => Attentional Activation
• Motivated by the Similarity between

Activation and Attention
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Motivation

Observation: Unification of Attention and Activation

1. Attention Mechanism Can Be Written As

X′ = G (X)� X, (1)

2. The Scalar Form of Eq. (1) Can Be Expressed As

X′
[c,i ,j] = G(X)[c,i ,j] · X[c,i ,j] = gc,i ,j (X) · X[c,i ,j]. (2)

3. Activation Function Can Also Be Expressed in a Similar Form

X′
[c,i ,j] = g ′ (X[c,i ,j]

)
· X[c,i ,j]. (3)
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Motivation

Observation: Unification of Attention and Activation

1. Both can be expressed as a nonlinear adaptive gating function

2. Difference: The gating function input in activation is a scalar,
while in attention is the entire feature map

3. A Unified Perspective:
• Attention Mechanism: A Context-Aware Activation Unit
• Activation Unit: An Extremely Simplified Attention Module
• Examples:

• ReLU: Indicator Function
• Swish [10]: Sigmoid Function
• SIREN [11]: Sinc Function
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Motivation

Using Lightweight Attention Modules as Activation Units:

1. The Basic Function of Introducing Nonlinearity into Networks

2. Dynamic, Context-Aware Feature Refinement Layer by Layer

6



Formulation

A Bottleneck of Point-wise Conv:

X′ = G (X)� X,

A Parameterless Version – Swish

x ′ = x · σ(x)
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Discussion

Revisiting Channel Attention in SENet:

1. Question: Can Channel Attention Only
Be Global?

2. Argument: Spatial Pooling Size Is the
Scale of Channel Attention

3. Perspective: SENet Adopts an Extreme
Coarse (Global) Scale
Biased to Large Objects

4. Our Hypothesis: Locality Is Important
for Activation Units

X(k)

Residual
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Block

BN C×H×W

BN C
r ×1×1

BN C×1×1

GlobalAvgPooling

Point-wise Conv

ReLU

Point-wise Conv

Sigmoid
⊗

⊕
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Discussion

Table 1: Difference between Attention Mechanism in SENet and ATAC

Difference SENet ATAC

Architecture GAP + Fully Connected Point-wise Conv
Attention Weight Shared by a Feature Map Element-wise
Context Scale Global Local / Point-wise
Usage Block-wise Refinement Layer-wise Activation

9



Fully Attentional Model

With ATAC Units, We Can Construct a Fully Attentional Model By

• Replacing ReLUs with ATAC Units

Hypothesis of a Fully Attentional Model:

1. Refining Features at Very Early Stages, Even after the First
Convolutional Layer

2. Enable Networks to Encode Higher-Level Semantics More
Efficiently.
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Fully Attentional Model

Examples:
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Experiments

Experiment outline

• Ablation Study
1. Is Locality Critical for Attentional Activation?
2. Choice of Micro Structure: NiN, SENet, or ATAC?
3. Verification of the Efficiency of the Fully Attentional Network

• Comparison to State-of-the-Art
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Ablation Study – Importance of Locality

Architectures for Ablation Study on Importance of Locality
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The Same #Params, Only Different in Context Aggregation Scale
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Ablation Study – Importance of Locality

Table 2: Validation on the Importance of Contextual Aggregation Scale

Activation CIFAR-10 CIFAR-100

b = 1 b = 2 b = 3 b = 4 b = 1 b = 2 b = 3 b = 4

ReLU 0.895 0.920 0.929 0.935 0.737 0.785 0.799 0.806
SEActivation 0.548 0.601 0.613 0.622 0.388 0.432 0.452 0.456
ATAC (ours) 0.906 0.927 0.936 0.939 0.764 0.796 0.812 0.821

Locality Is Critical for Attentional Activation.
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Ablation Study – Choice of Micro Structure

Architectures for Ablation Study on Choice of Micro Structure
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Ablation Study – Choice of Micro Structure

Table 3: Validation on the Choice of Micro Structure

Activation CIFAR-10 CIFAR-100

b = 1 b = 2 b = 3 b = 4 b = 1 b = 2 b = 3 b = 4

NiN 0.893 0.917 0.922 0.926 0.743 0.776 0.792 0.796
LocalSENet 0.906 0.926 0.931 0.937 0.762 0.794 0.805 0.811

ATAC (ours) 0.906 0.927 0.936 0.939 0.764 0.796 0.812 0.821
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Ablation Study – Efficiency of Fully Attentional Networks
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Fig. 6: Illustration of the performance gain tendency in
percentage by gradually replacing ReLUs with the proposed
ATAC units starting with the last layer and ending with the
first layer on CIFAR-10 and CIFAR-100. Here, a contribution
ratio of 1.0 corresponds to the normalized performance gain
obtained via a fully-attentional network with all ReLUs being
replaced by ATAC units and a ratio of 0.0 corresponds to no
ATAC units being used (hence, no gain). The results suggest
that the network can obtain a consistent performance gain by
going towards a fully attentional network.

each convolutional layer. Hence, to obtain the same number
of parameters and the same computational costs, the channel
reduction ratio r in the LocalSENet module is set to 1.0.

Table III provides the results, from which it can be seen that:
1) The performance of NiN is not as good as LocalSENet and
ATAC, which suggests that having a small additional budget
for parameters and computation costs, one should resort to
the attention mechanism instead of a NiN-style block. This
strengthens our assumption that instead of blindly increasing
the network depth, refining the feature maps is a more efficient
and effective way to increase the networks’ performance.
2) The difference between LocalSENet and ATAC is that
LocalSENet uses the attention mechanism only once with all
the additional parameters. In contrast, the ATAC units are
applied after every convolution (with each ATAC unit having
only half the parameters compared to the LocalSENet module).
The results suggest that given the same budget for parameters
and computational costs, one should choose the paradigm that
applies as many lightweight attention modules as possible,
instead of adopting the sophisticated attention modules only a
few times.

3) Towards Fully Attentional Networks (Q3): We also
investigated the cost-effective ratio of the fully attentional
network with the proposed ATAC unit. We analyze the net-
work’s predictive performance on CIFAR-10 and CIFAR-100
while gradually replacing ReLUs with ATAC units, starting
with the last layer and ending with the first layer. As it can
be seen in Fig. 6(a) and Fig. 6(b), the performance tends to
increase with more ATAC units. Therefore, a fully attentional
network offers a way to obtain a performance increase with
marginal additional costs. It can also be seen that the largest
performance increase is obtained for the replacements made
at the end of the process (steep increase in the range from
0.125 to 0.150), which correspond to replacements of ReLUs
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Fig. 7: Comparison with other activation units on CIFAR-10
and CIFAR-100 with a gradual increase of network depth.
The results suggest that we can obtain a better performance
with even fewer layers or parameters per network by replacing
ReLUs with the proposed ATAC units.

be ATAC units in the first layers of the network. This sup-
ports our hypothesis that early attentional modulation enables
networks to encode higher-level semantics more efficiently
by suppressing irrelevant low-level features and highlighting
relevant features in the early layers of the networks.

C. Comparison

Finally, we address question Q4 raised at the beginning of
this section by comparing our approach with several activation
functions and other state-of-the-art network competitors. We
also show that the ATAC-ResNet is not affected by the
vanishing gradient problem, thus addressing question Q5.

1) Activation Units & Networks (Q4): First, we compare
the proposed ATAC unit with other activation units, namely
ReLU [2], SELU [6], Swish [7], and xUnit [9].2 Fig. 7(a) and
Fig. 7(b) provide the comparison on CIFAR-10 and CIFAR-
100 given a gradual increase of the depths of the networks.
It can be seen that: (a) The ATAC unit achieves a better
performance for all experimental settings, which demonstrates
its effectiveness compared to the baselines. The Swish unit,
which is also a non-linear gating function, ranked second in the
comparison, better than the ReLU-like activation units. These
results reaffirm that one can obtain better activation functions
by considering alternative non-linearities than ReLU-like units.
(b) Since the ATAC unit outperforms the Swish unit—which
can be interpreted as a non-context-aware scalar version of
the ATAC unit—we conclude that channel-wise context is
beneficial for activation functions. (c) By replacing ReLUs
by ATAC units, one can obtain a more efficient convolutional
network that yields a better performance with fewer layers or
parameters per network. For example, in Fig. 7(b), the ATAC-
ResNet (b = 3) achieves the same classification accuracy as
the ResNet (b = 5), while only using 65% of the parameters.

Next, we compared our proposed methods with the baseline
and other state-of-the-art networks. Fig. 8(a) and Fig. 8(b)
illustrate the results given a gradual increase in the network

2We also consdiered GELU [12] and PReLU [8], but their performance
was not as good as the aforementioned baselines and were, hence, excluded
from the overall comparison.
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Comparison to State-of-the-Art Activation Units
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Fig. 6: Illustration of the performance gain tendency in
percentage by gradually replacing ReLUs with the proposed
ATAC units starting with the last layer and ending with the
first layer on CIFAR-10 and CIFAR-100. Here, a contribution
ratio of 1.0 corresponds to the normalized performance gain
obtained via a fully-attentional network with all ReLUs being
replaced by ATAC units and a ratio of 0.0 corresponds to no
ATAC units being used (hence, no gain). The results suggest
that the network can obtain a consistent performance gain by
going towards a fully attentional network.

each convolutional layer. Hence, to obtain the same number
of parameters and the same computational costs, the channel
reduction ratio r in the LocalSENet module is set to 1.0.

Table III provides the results, from which it can be seen that:
1) The performance of NiN is not as good as LocalSENet and
ATAC, which suggests that having a small additional budget
for parameters and computation costs, one should resort to
the attention mechanism instead of a NiN-style block. This
strengthens our assumption that instead of blindly increasing
the network depth, refining the feature maps is a more efficient
and effective way to increase the networks’ performance.
2) The difference between LocalSENet and ATAC is that
LocalSENet uses the attention mechanism only once with all
the additional parameters. In contrast, the ATAC units are
applied after every convolution (with each ATAC unit having
only half the parameters compared to the LocalSENet module).
The results suggest that given the same budget for parameters
and computational costs, one should choose the paradigm that
applies as many lightweight attention modules as possible,
instead of adopting the sophisticated attention modules only a
few times.

3) Towards Fully Attentional Networks (Q3): We also
investigated the cost-effective ratio of the fully attentional
network with the proposed ATAC unit. We analyze the net-
work’s predictive performance on CIFAR-10 and CIFAR-100
while gradually replacing ReLUs with ATAC units, starting
with the last layer and ending with the first layer. As it can
be seen in Fig. 6(a) and Fig. 6(b), the performance tends to
increase with more ATAC units. Therefore, a fully attentional
network offers a way to obtain a performance increase with
marginal additional costs. It can also be seen that the largest
performance increase is obtained for the replacements made
at the end of the process (steep increase in the range from
0.125 to 0.150), which correspond to replacements of ReLUs
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Fig. 7: Comparison with other activation units on CIFAR-10
and CIFAR-100 with a gradual increase of network depth.
The results suggest that we can obtain a better performance
with even fewer layers or parameters per network by replacing
ReLUs with the proposed ATAC units.

be ATAC units in the first layers of the network. This sup-
ports our hypothesis that early attentional modulation enables
networks to encode higher-level semantics more efficiently
by suppressing irrelevant low-level features and highlighting
relevant features in the early layers of the networks.

C. Comparison

Finally, we address question Q4 raised at the beginning of
this section by comparing our approach with several activation
functions and other state-of-the-art network competitors. We
also show that the ATAC-ResNet is not affected by the
vanishing gradient problem, thus addressing question Q5.

1) Activation Units & Networks (Q4): First, we compare
the proposed ATAC unit with other activation units, namely
ReLU [2], SELU [6], Swish [7], and xUnit [9].2 Fig. 7(a) and
Fig. 7(b) provide the comparison on CIFAR-10 and CIFAR-
100 given a gradual increase of the depths of the networks.
It can be seen that: (a) The ATAC unit achieves a better
performance for all experimental settings, which demonstrates
its effectiveness compared to the baselines. The Swish unit,
which is also a non-linear gating function, ranked second in the
comparison, better than the ReLU-like activation units. These
results reaffirm that one can obtain better activation functions
by considering alternative non-linearities than ReLU-like units.
(b) Since the ATAC unit outperforms the Swish unit—which
can be interpreted as a non-context-aware scalar version of
the ATAC unit—we conclude that channel-wise context is
beneficial for activation functions. (c) By replacing ReLUs
by ATAC units, one can obtain a more efficient convolutional
network that yields a better performance with fewer layers or
parameters per network. For example, in Fig. 7(b), the ATAC-
ResNet (b = 3) achieves the same classification accuracy as
the ResNet (b = 5), while only using 65% of the parameters.

Next, we compared our proposed methods with the baseline
and other state-of-the-art networks. Fig. 8(a) and Fig. 8(b)
illustrate the results given a gradual increase in the network

2We also consdiered GELU [12] and PReLU [8], but their performance
was not as good as the aforementioned baselines and were, hence, excluded
from the overall comparison.
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Comparison to State-of-the-Art Networks
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Fig. 8: Comparison of different networks on CIFAR-10/100
given a gradual increase of network depth. The results demon-
strate the effectiveness of the layer-wise manner of simultane-
ous feature activation and refinement by our ATAC units.

depth for all networks on CIFAR-10 and CIFAR-100. Com-
paring SENet [1] and GENet [3], one can see that the network
with the ATAC units performs better for all settings. We
believe that the improved performance stems from the layer-
wise and simultaneous feature activation and refinement of the
proposed attentional activation scheme. We also validated our
ATAC units on the ImageNet dataset. The results are provided
in Table IV. Note that compared to the self-reported results
from SENets [1], attention augmented (AA) convolution net-
works [5], full attention (FA) vision models [19], and gather-
excite (GE) networks [3], our ATAC-ResNet-50 achieves the
best in top-1 error. Notably, compared with GE-θ+-ResNet-
50 and SE-ResNet-50, the ATAC-ResNet-50 requires fewer
parameters. Although the number of GFlops is a bit higher
(which mainly stems from the point-wise convolutions in the
local contextual aggregation), the network yields a good trade-
off compared to the other architectures.

2) Vanashing Gradients (Q5): The performance of our
ATAC-ResNet on CIFAR-10/100 (b = 5, ResNet-32) and
ImageNet (ResNet-50) empirically answers the question Q5
that deep networks equipped with ATAC units do not appear to
suffer from the vanishing gradient problem. Interestingly, the
Swish activation function [7] also adopts the Sigmoid function
and the network with Swish units can also go very deep.
Note that the Sigmoid and Softmax functions are not used as
activation in our context, but are used to obtain probabilities to
weigh the feature maps (which cannot be obtained via ReLUs).
This is the reason why attention mechanism modules, deep
belief networks (DBN), recurrent neural networks (RNN), and
long short-term memory (LSTM) networks as well as our
ATAC units typically have layer-wise Sigmoid or Softmax
functions and can go very deep. In fact, the emergence of
batch normalization [21] allows the Sigmoid function to be
used in deep networks again. With the better expressive ability
of Sigmoid, these networks have achieved better results. In
addition, the residual connection [23] also helps training very
deep networks.

V. CONCLUSION

Smarter activation functions that integrate what is gener-
ally considered separately as attention mechanisms are very
promising and worthy of further research. Instead of blindly

TABLE IV: Classification comparison on ImageNet with other
state-of-the-art networks. ATAC-ResNet-50 achieves the best
top-1 err. with smaller parameter numbers than SE-ResNet-50
and GE-θ+-ResNet-50.

Architecture GFlops Params top-1 err. top-5 err.

ResNet-50 [23] 3.86 25.6M 23.30 6.55
SE-ResNet-50 [1] 3.87 28.1M 22.12 5.99

AA-ResNet-50 [5] 8.3 25.8M 22.30 6.20
FA-ResNet-50 [19] 7.2 18.0M 22.40 /

GE-θ+-ResNet-50 [3] 3.87 33.7M 21.88 5.80
ATAC-ResNet-50 (ours) 4.4 28.0M 21.41 6.02

increasing the depth of network, one should pay more at-
tention to the quality of feature activation. In particular,
we found that our attentional activation units—a unification
of activation function and attention mechanism that endow
activation units with attentional context information—improve
the performance of all the networks and datasets that we
have experimented with so far. To meet both the locality
of activation function and contextual aggregation of attention
mechanism, we propose a local channel attention module,
which locally aggregates point-wise cross-channel feature con-
textual information. A simple procedure of replacing all Re-
LUs with the proposed ATAC units produces a fully attentional
network that performs significantly better than the baseline
with a modest number of additional parameters. Compared
with other activation units, the convolutional network with our
ATAC units can gain a performance boost with fewer layers
or parameters per network.
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Codes and Trained Models

https://github.com/YimianDai/open-atac
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