

Separation of Aleatoric and Epistemic Uncertainty in Deterministic Deep Neural Networks

Denis Huseljic, Bernhard Sick, Marek Herde, Daniel Kottke {dhuseljic | bsick | marek.herde | daniel.kottke}@uni-kassel.de

> University of Kassel, Faculty 16 Electrical Engineering / Computer Science

> > December 9, 2020

Situation: Standard Deep Neural Networks (DNN) lack in the estimation of uncertainty associated with predictions.

Problem: In autonomous driving, for example, predictions must be reliable to avoid life-threatening situations.

Task: Provide models that measure epistemic uncertainty that describes the reliability of a prediction, and aleatoric uncertainty which describes the risk of a predicted class while maintaining proper generalization capabilities.

Approach: AE-DNN, a method for separating Aleatoric and Epistemic uncertainty in DNN.

Motivation

Intelligent Embedded Systems

AE-DNN can identify the following situations:

- (a) Low epistemic, low aleatoric uncertainty: \rightarrow Ideal as predictions are reliable.
- (b) Low epistemic, high aleatoric uncertainty: \rightarrow Predictions are reliable, but not distinct (e.g., due to sensor noise).
- (c) High epistemic uncertainty:

 \rightarrow Predictions are unreliable (aleatoric uncertainty can be disregarded).

Motivation

Characteristics:

- At run-time, AE-DNN allows for a detection of samples that were never seen during training (referred to as OOD detection) or an estimate of the risk coming with a decision.
- For computational efficiency, the inference avoids multiple forward passes through DNN as needed in ensembles, for instance.
- The inference is deterministic in the sense that the same input always leads to the same output (in contrast to Bayesian NN or Monte Carlo dropout).
- OOD samples are generated by means of Generative Adversarial Networks (GAN). As a result, AE-DNN does not require explicitly provided OOD data sets.
- The hyperparameter within the convex combination (OOD vs. ID) allows for a control of the degree of desired certainty in a concrete application.

A comparison to related techniques for uncertainty modeling in DNN is given below. We denote optimization criteria and mark benefits and flaws by + and -.

	Epistemic Uncer.	Aleatoric Uncer.	Inference Time	Training Time	ID Optim. Criterion	OOD Optim. Criterion
Ordinary	_	+	++	++	MLE	N/A
Ensembles	+	++	_		MLE	N/A
Dropout	+	+		+	MLE	N/A
EDL			++	++	Bayes-risk + KL	N/A
PN	++		++	+	KL	KL
AE-DNN	++	+	++	+	MLE	KL

The most similar approach to AE-DNN is Prior Networks (PN) which differs regarding the ID optimization criterion (Kullback-Leibler (KL) in PN and Maximum Likelihood (MLE) in AE-DNN).

Method

We can summarize our method AE-DNN as follows:

- A. For ID samples, we optimize the parameters of the DNN such that its output defines a Dirichlet-Categorical distribution over the classes.
- *B.* For OOD samples, we optimize the parameters of the DNN to enforce the Dirichlet distribution over the class probabilities, which is part of the above Dirichlet-Categorical distribution, to be a uniform distribution over the simplex of possible values.
- *C.* Since we obtain a Dirichlet distribution for every sample, we can derive measures describing the heteroscedastic aleatoric and epistemic uncertainty.

The model parameters' optimization is based on a convex-combination of A and B.

Method

Proposed Uncertainty Measures

The aleatoric uncertainty $u_a \in [0, 1]$ of a sample x^* is given by

The epistemic uncertainty $u_e \in [0, 1]$ of a sample x^* is given by

$$u_a = \frac{\mathbb{H}\left[\boldsymbol{y}^* | \boldsymbol{\alpha} = \boldsymbol{f}^{\boldsymbol{\omega}}(\boldsymbol{x}^*) + 1\right]}{\ln K}. \qquad \qquad u_e = \frac{K}{\|\boldsymbol{f}^{\boldsymbol{\omega}}(\boldsymbol{x}^*) + 1\|_1}$$

Notation:

- \blacksquare $\mathbb{H}[\cdot]$ denotes the entropy,
- $f^{\omega}(x^*)$ is the model output for sample x^* ,
- \blacksquare K is the number of classes, and
- the label y^* is distributed according a Dirichlet-Categorical distribution.

Evaluation

Data Sets	Methods	Generalization Accuracy (↑)	Ale ECE (↓)	atoric Uncerta NLL (↓)	inty BS (↓)	Epis AUROC (↑)	stemic Uncertainty UH
SVHN vs. CIFAR10	Ordinary	0.875±0.009	0.012 ±0.010	0.440±0.031	0.018±0.001	0.850±0.028	25000 AE-DNN
	Ensembles	0.900 ±0.004	$0.046 {\pm} 0.004$	$\textbf{0.361} {\pm} 0.015$	$\textbf{0.015}{\pm}0.001$	0.913±0.004	20000 EDL
	Dropout	$0.881 {\pm} 0.010$	$0.015 {\pm} 0.008$	$0.400 {\pm} 0.026$	$0.017{\pm}0.001$	0.921±0.009	PriorNet
	EDL	$0.196{\pm}0.000$	$0.089 {\pm} 0.007$	$2.291 {\pm} 0.011$	$0.090{\pm}0.000$	0.615 ± 0.017	A 15000
	PN (OOD gen.)	$0.840 {\pm} 0.038$	$0.107 {\pm} 0.036$	$0.589{\pm}0.134$	$0.025{\pm}0.006$	0.933±0.046	²⁰ 10000
	AE-DNN (OOD gen.)	$0.859{\pm}0.014$	$0.014 {\pm} 0.009$	$0.485{\pm}0.038$	$0.021 {\pm} 0.002$	0.970±0.017	5000
	PN (OOD av.)	$0.882{\pm}0.009$	$0.101 {\pm} 0.031$	$0.468 {\pm} 0.032$	$0.019{\pm}0.001$	0.993±0.002	
	AE-DNN (OOD av.)	$0.879{\pm}0.011$	$0.019 {\pm} 0.005$	$0.427{\pm}0.033$	$0.018{\pm}0.001$	0.997 ±0.001	0 0.00 0.25 0.50 0.75 1.00 Normalized Uncertainty

The table summarizes results for SVHN (as ID) vs CIFAR10 (as OOD).

For further details and additional results, we refer to our implementation which is available at https://github.com/hsljc/ae-dnn.

Questions?