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Motivation

Situation: Standard Deep Neural Networks (DNN) lack in the estimation of
uncertainty associated with predictions.

Problem: In autonomous driving, for example, predictions must be reliable to
avoid life-threatening situations.

Task: Provide models that measure epistemic uncertainty that describes the
reliability of a prediction, and aleatoric uncertainty which describes the risk of a
predicted class while maintaining proper generalization capabilities.

Approach: AE-DNN, a method for separating Aleatoric and Epistemic uncertainty
in DNN.
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Motivation

AE-DNN can identify the following situations:
(a) Low epistemic, low aleatoric uncertainty:
→ Ideal as predictions are reliable.

(b) Low epistemic, high aleatoric uncertainty:
→ Predictions are reliable, but not distinct (e.g., due
to sensor noise).

(c) High epistemic uncertainty:
→ Predictions are unreliable (aleatoric uncertainty
can be disregarded).
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Motivation

Characteristics:
At run-time, AE-DNN allows for a detection of samples that were never seen
during training (referred to as OOD detection) or an estimate of the risk
coming with a decision.
For computational efficiency, the inference avoids multiple forward passes
through DNN as needed in ensembles, for instance.
The inference is deterministic in the sense that the same input always leads to
the same output (in contrast to Bayesian NN or Monte Carlo dropout).
OOD samples are generated by means of Generative Adversarial Networks
(GAN). As a result, AE-DNN does not require explicitly provided OOD data
sets.
The hyperparameter within the convex combination (OOD vs. ID) allows for a
control of the degree of desired certainty in a concrete application.
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Comparison

A comparison to related techniques for uncertainty modeling in DNN is given
below. We denote optimization criteria and mark benefits and flaws by + and −.

Epistemic Aleatoric Inference Training ID Optim. OOD Optim.
Uncer. Uncer. Time Time Criterion Criterion

Ordinary − + ++ ++ MLE N/A
Ensembles + ++ − −− MLE N/A
Dropout + + −− + MLE N/A
EDL −− −− ++ ++ Bayes-risk + KL N/A
PN ++ −− ++ + KL KL
AE-DNN ++ + ++ + MLE KL

The most similar approach to AE-DNN is Prior Networks (PN) which differs
regarding the ID optimization criterion (Kullback-Leibler (KL) in PN and Maximum
Likelihood (MLE) in AE-DNN).
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Method

We can summarize our method AE-DNN as follows:
A. For ID samples, we optimize the parameters of the DNN such that its output

defines a Dirichlet-Categorical distribution over the classes.
B. For OOD samples, we optimize the parameters of the DNN to enforce the

Dirichlet distribution over the class probabilities, which is part of the above
Dirichlet-Categorical distribution, to be a uniform distribution over the simplex
of possible values.

C. Since we obtain a Dirichlet distribution for every sample, we can derive
measures describing the heteroscedastic aleatoric and epistemic uncertainty.

The model parameters’ optimization is based on a convex-combination of A and B.
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Method

Proposed Uncertainty Measures

The aleatoric uncertainty ua ∈ [0, 1] of a
sample x∗ is given by

ua =
H [y∗|α = fω(x∗) + 1]

lnK
.

The epistemic uncertainty ue ∈ [0, 1] of
a sample x∗ is given by

ue =
K

‖fω(x∗) + 1‖1
.

Notation:
H [·] denotes the entropy,
fω(x∗) is the model output for sample x∗,
K is the number of classes, and
the label y∗ is distributed according a Dirichlet-Categorical distribution.
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Evaluation

The table summarizes results for SVHN (as ID) vs CIFAR10 (as OOD).

Data Sets Methods
Generalization Aleatoric Uncertainty Epistemic Uncertainty
Accuracy (↑) ECE (↓) NLL (↓) BS (↓) AUROC (↑) UH

SVHN
vs.

CIFAR10

Ordinary 0.875±0.009 0.0120.0120.012±0.010 0.440±0.031 0.018±0.001 0.850±0.028
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Ensembles 0.9000.9000.900±0.004 0.046±0.004 0.3610.3610.361±0.015 0.0150.0150.015±0.001 0.913±0.004
Dropout 0.881±0.010 0.015±0.008 0.400±0.026 0.017±0.001 0.921±0.009

EDL 0.196±0.000 0.089±0.007 2.291±0.011 0.090±0.000 0.615±0.017
PN (OOD gen.) 0.840±0.038 0.107±0.036 0.589±0.134 0.025±0.006 0.933±0.046

AE-DNN (OOD gen.) 0.859±0.014 0.014±0.009 0.485±0.038 0.021±0.002 0.970±0.017
PN (OOD av.) 0.882±0.009 0.101±0.031 0.468±0.032 0.019±0.001 0.993±0.002

AE-DNN (OOD av.) 0.879±0.011 0.019±0.005 0.427±0.033 0.018±0.001 0.9970.9970.997±0.001

For further details and additional results, we refer to our implementation which is
available at https://github.com/hsljc/ae-dnn.
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Questions?
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