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I Problem

Nighttime pedestrian detection is a fundamental task for many practical applications,
such as autonomous driving. Some works propose to detect pedestrians at night by
multi-modal data (e.g. thermal and RGB), but the thermal sensor is expensive and not
widely available in robotics or surveillance systems.

Thus detecting only with RGB images is important, and it is also seldom explored

In previous literatures.
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At daytime, CNN features at pedestrian region show high responses
at pedestrian regions, with minimal noise at the background.

In contrast, at nighttime, CNN features fail to trigger high responses
at pedestrian regions while contain much noise at the background,
resulting in false negatives and positives, respectively.

To improve feature discrimination, we propose feature attention
module.
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Compared to daytime, pedestrians under adverse
Illumination trigger weaker responses.

These examples are hard positive examples and
close to the classification boundary.

We propose feature transformation module to
push dark examples to approach bright ones.
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I Methods

Feature Attention Module

Low- and high- level features usually carry Progressive Supervision: !1”"% IS"% Iﬁ%
different levels of semantic information.

Applying the same attention map to
different level features is sub-optimal.
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Results
Ablation Study

Baseline FAM FTM EuroCity Persons (Night) Nightowls
Seg features Seg masks Rea Small Occ All Rea Small Occ All
v 1536 2795 69.07 3253 | 1656 2626 46.53 2598
v 13.84  21.21 6320 29.26 | 16.08 27.05 4421 2496
v 1429  21.69 6406 2959 | 1622 2483 4598 2546
v v 12.71 19.74  60.82 27776 | 14.57 2351 4447 2370
v v v 1235 19.52  60.60  27.35 | 14.02 2243 4332 23.28
Overall Improvement +3.01 +8.43 +8.47 +5.18 | +2.54 +3.83 +3.21 +2.7




Results
Qualitative Results
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I Motivation
Comparison with SOTA

COMPARISON WITH STATE-OF-THE-ART METHODS ON THE NIGHTOWLS COMPARISON WITH STATE-OF-THE-ART METHODS ON THE ECPN
VALIDATION SET. NUMBERS ARE MISS RATES, LOWER IS BETTEER. VALIDATION SET. NUMBERS ARE MISS RATES, LOWER IS BETTEER.
Method Rea Small Occ All Method Rea Small Occ All
A-FRCNN [5] 18.44  30.17 54.41 30.16 A-FRCNN [7] 16.77 36.49 70.91 34.79
CSP [27] 21.44 2985 5905 3288 CSP [27] 17.44 21.85 66.81 33.16
ALFNet [7] 21.01 33.00 o6l1.06 3218 ALFNet [7] 16.66 30.83 6625 32.65
FATNet(ours) 14.02 22,43 4332 23.28 FATNet(ours) 12.35 19.52 60.60 27.35
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