Gender Classification Using Video Sequences of Body Sway Recording by Overhead Camera

T. Kamitani, Y. Yamaguchi, S. Nakatani, M. Nishiyama, Y. Iwai
Tottori University, Japan
There is high demand for technology that can classify the gender of a person based on a video sequence.

- To classify the gender, the characteristics that distinguish between females and males must be obtained.
- The movements of a person have been considered for representing the characteristics.

Existing methods using the GEI

[Shan+, Neurocomputing’08][Yu+, TIP’09]

They are designed for classifying the gender of a walking person.

No existing methods

We design a method for classifying the gender of a standing person.
Analytical research in the medical field

It investigates whether body sway has differences between females and males.
[Kitabayashi+, J Physiol Anthropol Appl Human Sci’04] [Kim+, GGI’09] [Plandowska+, PLoS ONE’20]

Method:
- A force plate placed on the floor
- Time-series signals of the center positions

Observation:
- There are significant differences between standing females and males in terms of the time-series signals.

Problem:
- To apply such medical data on body sway for gender classification, a contact-type sensor must be placed on the floor.
- These studies did not consider the use of cameras for gender classification applications.
We propose a method for extracting a feature from a video sequence of body sway and investigate whether it can be used for gender classification.

- Estimation of silhouette sequence of upper-body regions
- Removal of variation of apparent upper body size
- Measurement of time-series signals of body sway
- Extraction of features of local movements (LM) for gender classification

A video sequence from an overhead camera

Silhouette

Movement [pixel]

Time [s]

Frequency [Hz]

Power
Dataset

- Number of participants: 60
 - Male: 30 participants (Average height: 170.2 cm)
 - Female: 30 participants (Average height: 158.7 cm)
- Time length of a video sequence: 60 seconds
- Posture: Romberg’s pose
- Clothes: Dark-blue nylon outerwear

![Image of body sway dataset]

- Overhead camera
- Video sequence of body sway
- Participant
- Timer
- Camera setting

Dimensions:
- 2.0 m - 4.0 m
- 1.4 m

4x4 grid of images
Evaluation of gender classification accuracy

Comparison with:

1. GEI reported in previous studies on the gender classification of a walking person.
2. C3D with short video sequences as a representative of spatio-temporal features extraction.

<table>
<thead>
<tr>
<th>Our LM features</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. GEI [Shan+, Neurocomputing’08] [Yu+, TIP’09]</td>
<td>67.7 ± 0.8</td>
</tr>
<tr>
<td>2. C3D [Tran+, ICCV’15]</td>
<td>87.6 ± 1.7</td>
</tr>
<tr>
<td>90.3 ± 1.3</td>
<td></td>
</tr>
</tbody>
</table>

The proposed LM features include better spatio-temporal characteristics for representing body sway.

Number of participants: 60