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Abstract

I We introduce neural architecture search (NAS) for the
automatic discovery of small models for keyword spotting
(KWS) in limited resource environments

I We optimize the structure of convolutional neural networks
(CNNs) using NAS to obtain a tradeoff between accuracy and
number of operations per inference

I Weight quantization is considered to reduce the memory
consumption even further

I ⇒ State-of-the-art accuracy of 96.3% is obtained on the
Google Speech commands dataset using only 340.1 kB of
memory and 27.1 million operations
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Methods

Neural Architecture Search (NAS)

I Multi-objective NAS using ProxylessNAS [1]

I Optimize the structure of CNNs for keyword classification

I Tradeoff parameter β to establish a tradeoff between accuracy
and number of operations:

lossarch = CEloss ·
(

log(opsexp)

log(opstarget)

)β
NAS Model

Stage Operation Stride (H, W) #Channels #Layers

(i) Conv, 5x11 1, 2 72 1
(ii) MBC[e], [k]x[k] 2, 2 72 12

or Identity
(iii) Conv, 1x1 1, 1 144 1

Pooling & FC

Expansion rates e ∈ {1, 2, 3, 4, 5, 6}
Kernel sizes k ∈ {3, 5, 7}
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Methods

Weight quantization

I Weights are quantized during NAS to 8-bit using the
straight-through estimator (STE)

I Furthermore, two weight quantization methods are compared
on an already trained model

1. Quantization aware training using the STE
2. Quantization as a post-processing step by rounding parameters
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Experimental Setup

Google Speech commands dataset [2]:

I 65,000 1-second long audio files

I 12 classes (10 keywords, silence, unknown)

Augmentation:

I Random time shift

I Background noise

Feature extraction:

I Mel-frequency cepstrum coefficients (MFCC)
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Efficient Architecture Search

Architecture Test Acc. (%) Operations Memory

Hello Edge DS-CNN [3] 94.4 5.4 M 38.6 kB
Hello Edge DS-CNN [3] 94.9 19.8 M 189.2 kB
Hello Edge DS-CNN [3] 95.4 56.9 M 497.6 kB

Ours, ω = 0.75 95.1 4.6 M 89.8 kB
Ours, ω = 1.25 95.5 5.2 M 137.9 kB
Ours, ω = 1.25 95.6 19.6 M 494.8 kB
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Comparing Weight Quantization Schemes

1. Quantization aware training using the STE
I Only small loss of accuracy even at low bit-widths (1-bit)
I Marginal training overhead introduced

2. Post-processing quantization
I Comparable performance to STE if using 8 to 5 bits
I Substantial decrease in performance if using fewer than 4 bits
I No training overhead introduced
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Varying Number of MFCC Features

⇒ Best model: 96.7% with 1,403.3 kB and 155.3 M operations
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Conclusion

I Neural architecture search (NAS) can be used to obtain
efficient convolutional neural networks (CNNs) without
compromising classification accuracy

I CNN models obtained by NAS achieve state-of-the-art
performance

I Weight quantization is a viable option to reduce the memory
footprint for storing the CNN weights

I Changing the number of MFCC features can have a
substantial impact on the performance of the models
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