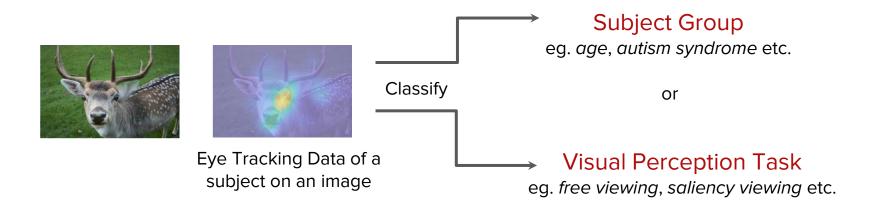
Classifying Eye-Tracking Data Using Saliency Maps

²Shafin Rahman

¹Sejuti Rahman

¹Omar Shahid

¹Md. Tahmeed Abdullah


¹Jubair Ahmed Sourav

PROBLEM DEFINITION

Given eye fixation data of a subject on an image

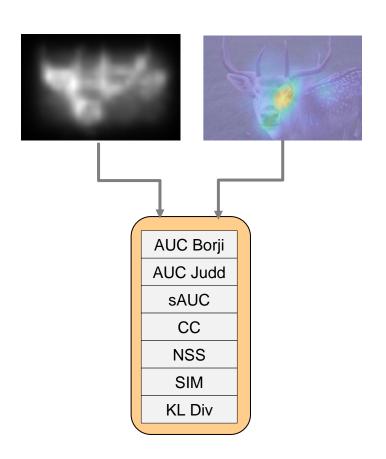
ISSUES WITH EXISTING METHODS

- Lack of a general task agnostic solution
- OHOGS, Gist, Spatial density, LM filters, CNN feature (VGG,ResNet)
 - Same feature set does not consistently work across problems
- Different problems require to find different aspects of fixation data as distinguishing information
- The learning model cannot get enough supervision from a small amount of fixation data

CONTRIBUTIONS

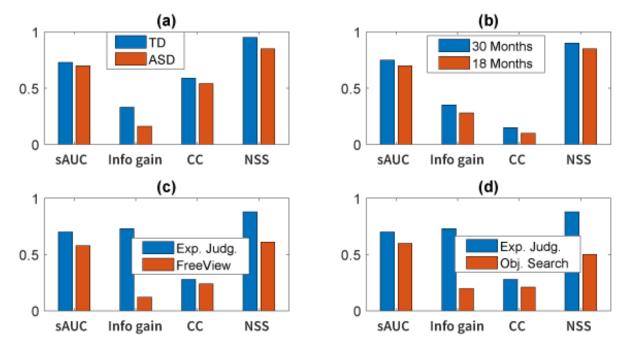
- Novel Feature Extraction method for task agnostic eye-tracking data.
- Use Saliency maps to extract discriminative features for fixation data.
- State-of-the-art performance on three tasks,

ASD screening

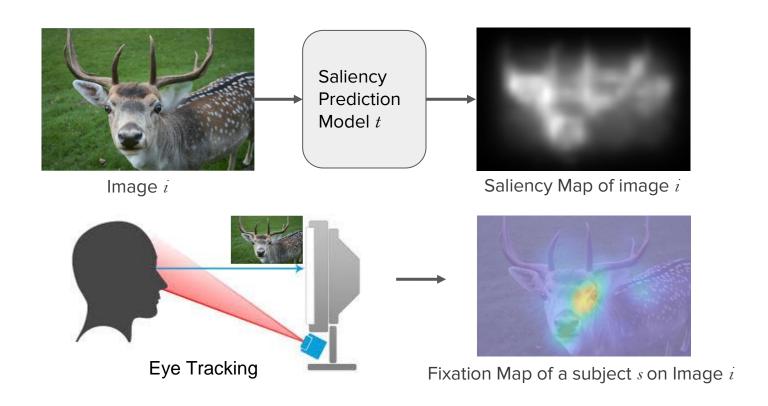

Toddler age prediction

Visual perceptual task prediction.

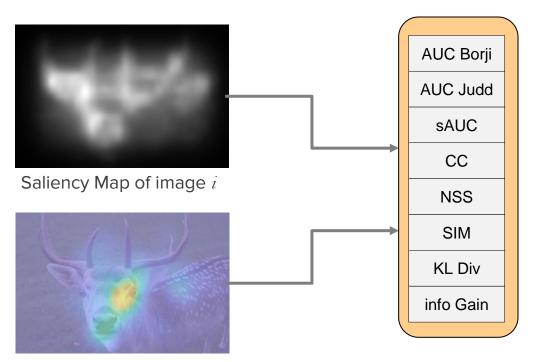
WHY SALIENCY MAPS?


Compare saliency map with fixation data with 8 similarity and dissimilarity metrices:

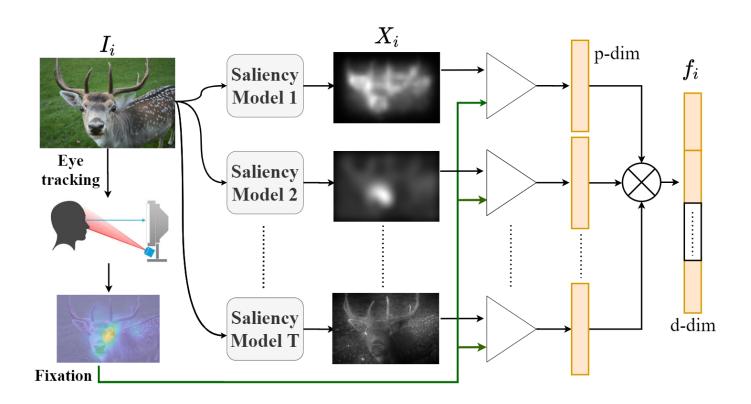
AUC Borji, AUC Judd, Shuffled AUC, Correlation Coefficient, Similarity, KL Divergence, NSS, Info Gain



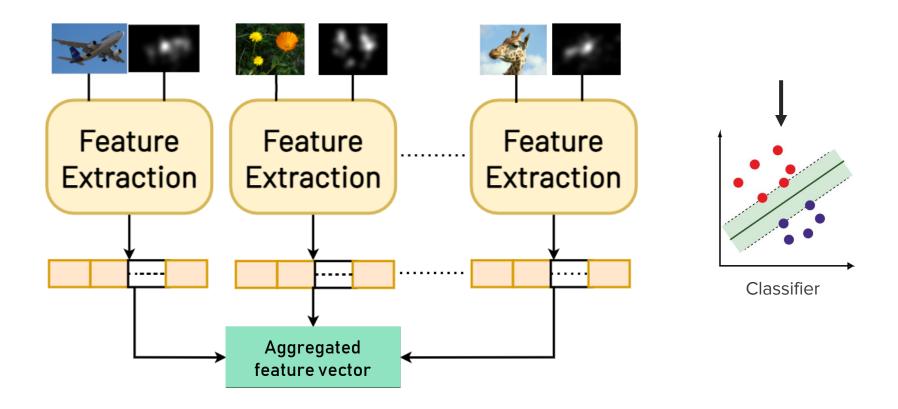
WHY SALIENCY MAPS?


The metrices vary for different classes/tasks

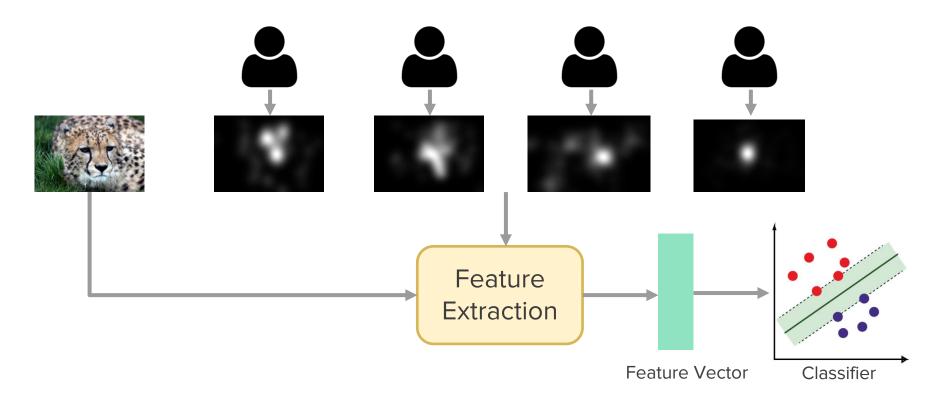
PROPOSED METHOD



PROPOSED METHOD



Fixation Map of a subject s on Image i


PROPOSED METHOD

PROPOSED METHOD: SUBJECT CLASSIFICATION

PROPOSED METHOD: TASK CLASSIFICATION

EXPERIMENT 1: ASD SCREENING

- Saliency4ASD [1] dataset
- 2 classes: (i)Typically Developed (TD), (ii) Autism Syndrome Disorder(ASD)
- 300 images shown to 28 children

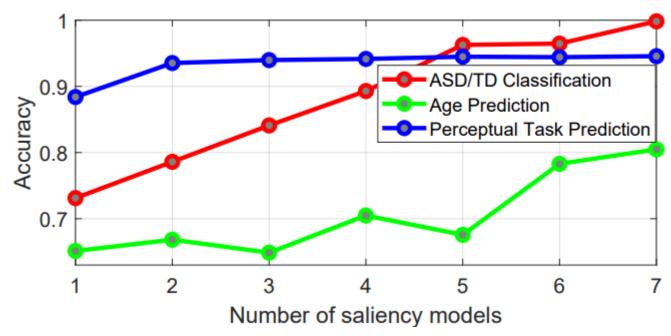
	Accuracy	Sensitivity	Specificity	AUC
Chen'19 (Independent)	89.00	86.00	93.00	92.00
Chen'19 (Full)	93.00	93.00	93.00	98.00
Ours (SVM)	99.50	96.70	99.30	99.50
Ours (XGBoost)	99.80	100.00	99.70	99.80

[1] H. Duan, G. Zhai, X. Min, Z. Che, Y. Fang, X. Yang, J. Gutierrez, and ´P. L. Callet, "A dataset of eye movements for the children with autism spectrum disorder," in Proceedings of the 10th ACM Multimedia Systems Conference, pp. 255–260, 2019

EXPERIMENT 2: TODDLER'S AGE CLASSIFICATION

- Dalrymple'19 [2] Dataset
- 100 images shown to 41 toddlers
- 2 classes: (i) 18 months old, (ii) 30 months old

	Accuracy	Sensitivity	Specificity	AUC
Dalrymple'19	83.00	90.00	81.00	84.00
Ours (SVM)	75.60	78.90	72.70	75.80
Ours (XGBoost)	83.00	84.20	81.80	84.00


EXPERIMENT 3: PERCEPTUAL TASK PREDICTION

 4 classes: free-viewing, object search, saliency search, and explicit judgment

	Free/obj	Free/Sal	Free/Exp	Obj/Sal	Obj/Exp	Sal/Exp
		All images	and subjec	ets		
Boisvert'16 [5]	84.38	66.13	89.75	89.88	97.75	90.00
Ours (SVM)	86.35	78.57	95.33	94.70	97.80	96.20
Ours (XGBoost)	84.20	74.30	96.50	84.25	97.70	96.10
	50	% images	but all subj	ects		
Boisvert'16 [5]	73.41	59.59	-	71.01	-	-
Ours (SVM)	79.54	71.70	86.21	82.31	90.20	91.56
Ours (XGBoost)	78.80	69.60	86.13	82.51	88.60	90.36
	Al	l images b	ut 50% sub	jects		
Boisvert'16 [5]	79.98	60.16	-	77.85	-	_
Ours (SVM)	82.30	66.25	78.77	81.33	84.57	83.18
Ours (XGBoost)	77.20	64.32	75.13	80.23	79.00	81.50

ABLATION STUDY

Accuracy of model increases when number of saliency models used increases

SUMMARY

- Existing eye tracking classification methods are not generalized across tasks
- Employ popular Saliency models for feature extraction from fixation data
- Shows significant performance boosts in comparison to similar investigations

Code: https://github.com/atahmeed/eye-tracking-with-saliency