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Time series clustering: challenges and algorithms

Time series: Type of data naturally organized as sequences. Functional data
varying along one dimension (curve), often time but not necessarily.
Examples: sensor measurements, biological data, economic data…

Clustering: Finding groups called clusters such that elements sharing the same
cluster are similar, and elements belonging to different clusters are dissimilar.

Challenges

▶ High dimensionality
▶ Temporal correlation
▶ Invariance to
transformations

▶ Varying lengths

0 20 40 60 80 100 120

2

1

0

1

2

3

Cluster 1

0 20 40 60 80 100 120

2

1

0

1

2

3

Cluster 2

0 20 40 60 80 100 120

2

1

0

1

2
Cluster 3

2/17



Time series clustering: challenges and algorithms

Time series: Type of data naturally organized as sequences. Functional data
varying along one dimension (curve), often time but not necessarily.
Examples: sensor measurements, biological data, economic data…
Clustering: Finding groups called clusters such that elements sharing the same
cluster are similar, and elements belonging to different clusters are dissimilar.

Challenges

▶ High dimensionality
▶ Temporal correlation
▶ Invariance to
transformations

▶ Varying lengths

0 20 40 60 80 100 120

2

1

0

1

2

3

Cluster 1

0 20 40 60 80 100 120

2

1

0

1

2

3

Cluster 2

0 20 40 60 80 100 120

2

1

0

1

2
Cluster 3

2/17



Time series clustering: challenges and algorithms

Time series: Type of data naturally organized as sequences. Functional data
varying along one dimension (curve), often time but not necessarily.
Examples: sensor measurements, biological data, economic data…
Clustering: Finding groups called clusters such that elements sharing the same
cluster are similar, and elements belonging to different clusters are dissimilar.

Challenges

▶ High dimensionality
▶ Temporal correlation
▶ Invariance to
transformations

▶ Varying lengths

0 20 40 60 80 100 120

2

1

0

1

2

3

Cluster 1

0 20 40 60 80 100 120

2

1

0

1

2

3

Cluster 2

0 20 40 60 80 100 120

2

1

0

1

2
Cluster 3

2/17



Time series clustering: challenges and algorithms

Time series invariances and similarity measures (see [Giusti and Batista, 2013])

▶ Scale, offset→ normalization, correlation-based similarities (shape-based)
[Paparrizos and Gravano, 2015] …

▶ Shifting→ find optimal shifting between 2 series
▶ Warping (speed & delay) or uniform temporal scaling (speed)→ Dynamic
Time Warping (DTW) [Sakoe and Chiba, 1978]

▶ Occlusion→ subsequences, shapelets…
▶ Complexity, noise→ smoothing, complexity-invariant distance
[Batista et al., 2011] …
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Time series clustering: challenges and algorithms
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Time series clustering: challenges and algorithms

A bit of taxonomy (see [Warren Liao, 2005, Aghabozorgi et al., 2015])
Tasks: Whole time series, Subsequence clustering, Time point/Segmentation
Methods:

Time Series Clustering Similarity
Distance

Raw time 
series

Raw

Model

Transformation

Model-based

Regressions

Time-domain

Frequency-
domain

Autoregressive
Dictionary-

based

Representation 
Learning

SAX, 
BOSS, 
BOP, ..

ARMA, 
GARCH, 
VAR, ..

Fourier, 
Wavelets..

Polynomial, 
Splines ..

Hidden Markov Chain 
Models, KL distance..

L2 norm, DTW, 
Shapelets, LCSS.. 

Neural 
Networks
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Time series clustering: challenges and algorithms

This work focuses on whole raw time series clustering, experiments with 2
algorithms: K-medoids (PAM) [Kaufman and Rousseeuw, 1990, Ng and Han, 1994]
with EUC/COR/DTW and K-shape [Paparrizos and Gravano, 2015].

EUC(x, y) = ||x− y||2 =

√√√√ T∑
t=1

(xt − yt)2

COR(x, y) = 1− NCC0(x, y)

DTW(x, y) = min

√√√√ P∑
i=1

wi

SBD(x, y) = 1−max
w

NCCw(x, y)

Method/Invariance Scale Shift Warping

K-medoids + EUC % % %

K-medoids + COR ! % %

K-medoids + DTW % ! !

K-shape ! ! %
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Model selection in time series
clustering



Model selection in clustering

Clustering validation
”Evaluating results of cluster analysis in a quantitative and objective fashion”
[Roth et al., 2002], in order to select the right number of clusters in a data set,
or to tune any hyperparameter of a clustering algorithm.

No universally admitted loss function or ground-truth as in supervised ML
→ challenging problem! [von Luxburg et al., 2012, Ben-David, 2018]

Figure 1: Toy example on alternative clusters. [Färber et al., 2010]
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Model selection in clustering

No labels→ Internal clustering validity indices (CVIs) (see [Arbelaitz et al., 2013])

▶ Indices based on within-cluster/between-cluster distances (compactness VS
separateness): Davies-Bouldin, Silhouette…strong priors on the geometry!

▶ Model-based: likelihood criteria (AIC, BIC, ICL…)
▶ Statistical robustness: cluster stability analysis

Not well studied in TS clustering!
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Clustering stability

Stability principle
A clustering algorithm applied with the same parameters to perturbed versions
of a data set should find the same structure and obtain similar results. ”to be
meaningful, a clustering must be both good and the only good clustering of the
data, up to small perturbations” [Meilǎ, 2018]

1. Generate several samples from the data distribution (resampling,
perturbation).

2. Run the clustering algorithm on each sample.
3. Measure similarities between the obtained partitions.
4. Aggregate these similarities into a stability score.
5. (optional: normalization step.)

See [Von Luxburg, 2009] for a review. 9/17



Stadion: a criterion based on a stability trade-off

Definition in [Mourer et al., 2020]
A clustering is a partitioning of data into groups so that the partition is stable,
and within each cluster, there exists no stable partition.

▶ Between-cluster stability StabB(CK): How much does the partition change when
adding uniform or Gaussian noise?
▶ Within-cluster stability StabW(CK,Ω): Are there any stable partitions within any
of the clusters?

Stability difference criterion:

Stadion(CK,Ω) := StabB(CK)− StabW(CK,Ω)
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Stadion: a criterion based on a stability trade-off

( )StabB CK ( , Ω)StabW CK

K = 1
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Stadion: a criterion based on a stability trade-off

( )StabB CK ( , Ω)StabW CK

K = 5
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Invariance-guided time series
clustering validation



Let invariances guide the perturbation process

Prerequisite: Prior knowledge of invariances of the data (domain knowledge).

▶ Additive uniform/Gaussian noise is not adapted to time series (won’t hit the
cluster boundaries).

▶ Domain-specific perturbation process (first approach in finance
[Marti et al., 2016]).

▶ Idea:
> Leverage data invariances to guide the perturbation process.
> Perturbing latent factors of variation.
> Finding structures that are resilient to perturbation.
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Pertubing latent factors of variation
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Experiments



Selecting the K

How many clusters are there in a data set?

warping

Cluster 1 Cluster 2 Cluster 3

Number of bumps

Lo
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tio
ns

Figure 2: Toy data set with 1, 2 or 3 bumps ar random locations.

▶ Perturbation: random warping
▶ Algorithm: K-medoids + DTW 14/17



Selecting the K
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Selecting the K

How many clusters are there in my data set?
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Figure 3: CBF data set.

▶ Perturbation: random shifting + uniform noise
▶ Algorithm: K-medoids + DTW
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Selecting the K
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Thank you for watching, feel free to read the paper for more
details!
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