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Time series clustering: challenges and algorithms

Time series: Type of data naturally organized as sequences. Functional data
varying along one dimension (curve), often time but not necessarily.

Examples: sensor measurements, biological data, economic data...

Clustering: Finding groups called clusters such that elements sharing the same
cluster are similar, and elements belonging to different clusters are dissimilar.

Challenges

» High dimensionality

» Temporal correlation

» |nvariance to
transformations

» Varying lengths
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Time series clustering: challenges and algorithms

Time series invariances and similarity measures (see [Giusti and Batista, 2013])
» Scale, offset — normalization, correlation-based similarities (shape-based)
[Paparrizos and Gravano, 2015] ...
» Shifting — find optimal shifting between 2 series

» Warping (speed & delay) or uniform temporal scaling (speed) — Dynamic
Time Warping (DTW) [Sakoe and Chiba, 1978]

» Occlusion — subsequences, shapelets...

» Complexity, noise — smoothing, complexity-invariant distance
[Batista et al., 2011] ...
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Time series clustering: challenges and algorithms

Scale

Location
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Time series clustering: challenges and algorithms

A bit of taxonomy (see [Warren Liao, 2005, Aghabozorgi et al., 2015])
Tasks: Whole time series, Subsequence clustering, Time point/Segmentation
Methods:

L2 norm, DTW,
Shapelets, LCSS..

Hldden Markov Chain
Model Madels KL distance...

Raw time
series
Polynomial,
Splines .

Time-domain

Time Series Clustering jgd S[;?sltllaar:étey <
< Frequency-

Model-based domain

Autoregressive Fourier,

Dictionary- , Wavelets..
based

Transformation

Representation

Learning Neural

Networks

5/17



Time series clustering: challenges and algorithms

This work focuses on whole raw time series clustering, experiments with 2
algorithms: K-medoids (PAM) [Kaufman and Rousseeuw, 1990, Ng and Han, 1994]
with EUC/COR/DTW and K-shape [Paparrizos and Gravano, 2015].
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Model selection in clustering

Clustering validation

"Evaluating results of cluster analysis in a quantitative and objective fashion”
[Roth et al,, 2002], in order to select the right number of clusters in a data set,
or to tune any hyperparameter of a clustering algorithm.
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Model selection in clustering

Clustering validation

"Evaluating results of cluster analysis in a quantitative and objective fashion”
[Roth et al,, 2002], in order to select the right number of clusters in a data set,
or to tune any hyperparameter of a clustering algorithm.

No universally admitted loss function or ground-truth as in supervised ML
— challenging problem! [von Luxburg et al., 2012, Ben-David, 2018]
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Figure 1: Toy example on alternative clusters. [Farber et al., 2010]



Model selection in clustering

No labels — Internal clustering validity indices (CVIs) (see [Arbelaitz et al., 2013])

» Indices based on within-cluster/between-cluster distances (compactness VS
separateness): Davies-Bouldin, Silhouette...strong priors on the geometry!

» Model-based: likelihood criteria (AIC, BIC, ICL...)

» Statistical robustness: cluster stability analysis

Not well studied in TS clustering!

8/17



Clustering stability

Stability principle

A clustering algorithm applied with the same parameters to perturbed versions
of a data set should find the same structure and obtain similar results. "to be
meaningful, a clustering must be both good and the only good clustering of the
data, up to small perturbations” [Meila, 2018]

1. Generate several samples from the data distribution (resampling,
perturbation).

Run the clustering algorithm on each sample.

Measure similarities between the obtained partitions.

Aggregate these similarities into a stability score.

(optional: normalization step.)

gR W N

See [Von Luxburg, 2009] for a review. 0/17



Stadion: a criterion based on a stability trade-off

Definition in [Mourer et al., 2020]
A clustering is a partitioning of data into groups so that the partition is stable,
and within each cluster, there exists no stable partition.
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Stadion: a criterion based on a stability trade-off

Definition in [Mourer et al., 2020]
A clustering is a partitioning of data into groups so that the partition is stable,
and within each cluster, there exists no stable partition.

» Between-cluster stability Stabg(Ck): How much does the partition change when
adding uniform or Gaussian noise?

» Within-cluster stability Staby(Ck, R2): Are there any stable partitions within any
of the clusters?

Stability difference criterion:

Stadion(CK, Q) = StabB(CK) — StabW(CK, Q)
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Invariance-guided time series
clustering validation




Let invariances guide the perturbation process

Prerequisite: Prior knowledge of invariances of the data (domain knowledge).

» Additive uniform/Gaussian noise is not adapted to time series (won't hit the
cluster boundaries).
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Let invariances guide the perturbation process

Prerequisite: Prior knowledge of invariances of the data (domain knowledge).

» Additive uniform/Gaussian noise is not adapted to time series (won't hit the
cluster boundaries).

» Domain-specific perturbation process (first approach in finance
[Marti et al,, 2016]).
» Idea:

> Leverage data invariances to guide the perturbation process.
> Perturbing latent factors of variation.

> Finding structures that are resilient to perturbation.
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Pertubing latent factors of variation

Scale

Location
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Experiments




Selecting the K

How many clusters are there in a data set?

Cluster 1 Cluster 2 Cluster 3

N AN
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Locations

Number of bumps

Figure 2: Toy data set with 1,2 or 3 bumps ar random locations.

» Perturbation: random warping
» Algorithm: K-medoids + DTW 17



Selecting the K

Warp invariance (K-medoids/DTW) Warp invariance (K-medoids/DTW)
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Selecting the K

How many clusters are there in my data set?

Cluster 1 Cluster 2 Cluster 3
2

Figure 3: CBF data set.

» Perturbation: random shifting + uniform noise
» Algorithm: K-medoids + DTW
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Selecting the K

CBF - Random shifting + uniform noise (K-medoids/DTW)
CBF - Random shifting + uniform noise (K-medoids/DTW)
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Thank you for watching, feel free to read the paper for more
details!
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