One step clustering based on a-contrario framework for detection of alterations in historical violins

Alireza Rezaei*, Sylvie Le Hégarat-Mascle*, Emanuel Aldea*, Piercarlo Dondi**, Marco Malagodi***

*SATIE Laboratory, Universite Paris Saclay

**Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Italy

***Department of Musicology and Cultural Heritage, University of Pavia, Italy

Introduction

- Preventive conservation: constant monitoring of artworks to reduce the risk of damage
- Historical wood musical instruments are more susceptible to damage because of constant use
- UV induced fluorescence imaging is a widely adopted non-invasive diagnostic technique. We work with a multi-temporal series of UVIFL images.
- Surface wear detection is a semantic segmentation problem: the intact areas and the wear region(s).
- We propose a new method based on the a-contrario framework
- The main contribution: to encompass in a single model both criteria of a wear: a high density of pixels having different radiometry with respect to the reference image.

Problem Definition

- Starting from a time series of images
- Each frame is compared to the reference image providing the colour difference map
- Objective: the segmentation of each difference map with respect to semantic classes, one of which representing the wear area(s).
- Ranking the segmented clusters based on their meaningfulness

Proposed approach

- Our approach is based on the computation of the number of false alarms by rejecting a naive assumption. [Desolneux et al. 2003]
- ▶ Naive model: The set of points S is a random set of |S| independent uniformly distributed variables over the 3D (2D+Greylevel) space of the image.
- The significance concept: A cluster is more significant if it is very dense (i.e., its points are `surprisingly' close) not only spatially but also in terms of grey-level difference.
- Proposed distance formula: it includes both the 2D spatial distance and the transformed greylevel values:

 $D^{2}(i,j) = D_{sp}^{2}(i,j) + c \times (f(y_{i})^{2} + f(y_{j})^{2})$

Proposed approach

• The NFA computation:

 $NFA(M, k, V_1, V_2) = N_{test} \sum_{i=k}^{M} {\binom{M}{i} V_1^i [1 - V_2]^{M-i}}$

K is the number of points in the cluster and M is the total number of points

 V_1 is the lower bound and for V_2 is the upper bound for the volume of the cluster

• Meaningfulness: For each cluster

 $\Omega = -\log(NFA)$

Distinct clusters with the highest number of points and highest meaningfulness are the output of the algorithm.

Evaluation - Results

Two sample frames of UVIFL images and the result of the proposed algorithm for them. Blue colour shows the most significant cluster.

Evaluation - Results

- Comparisons with two existing algorithms:
 - ▶ FRFCM proposed by Lei et al. 2018
 - ► HDBSCAN proposed by Campello et al. 2015

