25th International Conference in Pattern Recognition Milan, 10-15 January 2021

Mood detection analyzing lyrics and audio signal based on deep learning architectures

K. Pyrovolakis, P. Tzouveli, G. Stamou School of Electrical and Computer Engineering National Technical University of Athens Athens, Greece

AIILS

Contents

1. Introduction
2. From Audio and Lyrics to Mood
3. Data Preparation
4. System Architecture
5. Results

Introduction

The terms music and mood are two concepts strongly connected.

In our paper we investigate how to detect the mood of a music track applying Deep Learning techniques.

What was our approach?

- A Lyric analysis model
- An Audio analysis model
- A Multichannel model
- Compare the results

The Emotional Model

- Rusel's Circumplex is the emotional model we used in our work
- According to Circumplex all human emotions are distributed in a two-dimensional space with axes of valence and arousal
- Each quadrum represents a mood class

Valence (\mathbf{V}) and arousal (A) values	Mood
$A>A_{t}$ and $V>V_{t}$	Happy
$A>A_{t}$ and $V<-V_{t}$	Angry
$A<-A_{t}$ and $V<-V_{t}$	Sad
$A<-A_{t}$ and $V>V_{t}$	Relaxed

From Audio to Mood

Association between structural features of music and emotion

Structural Feature	Definition	Associated Emotion
Tempo	The speed or pace of a musical piece	Fast tempo:happiness, excitement, anger. Slow tempo: sadness, seren- ity.
Mode	The type of scale	Major tonality: happiness, joy. Mi- nor tonality: sadness.
Loudness	The physical strength and amplitude of a sound	Intensity, power, or anger
Melody	The linear succession of musical tones that the listener perceives as a single entity	Complementing harmonies: happi- ness, relaxation, serenity. Clashing harmonies: excitement, anger, un- pleasantness.
Rhythm	The regularly recur- ring pattern or beat of a song	Smooth/consistent rhythm: happiness, peace. Rough/irregular rhythm: amusement, uneasiness. Varied rhythm: joy.

Features extracted from audio that we experimented with:

- Spectogram
- Mel Spectogram
- Log-Mel Spectogram
- MFCCs
- Chroma features
- Centroid tonal features
- Spectral contrast

From Lyrics to Mood

- Each world in lyrics is attributed to pair of valence and arousal values
- The set of values is computed with the help of dictionaries which contain emotional information
- A general pair of valence and arousal values is computed for each song

Data Preparation

- The dataset we used is the MoodyLyrics Dataset
- 2.000 song titles with their corresponding mood label
- Mood labels = \{happy, angry, sad, relaxed $\}$
- Audio data
- Collect audio files from web
- Augment samples (37.989 audio samples)
- Extract audio features
- Lyrics data
- Collect lyrics from web
- Augment samples (18.115 lyrics samples)
- Compute BERT Embeddings

System Architecture
 Audio

Features

How the multichannel system $\left(\mathrm{M}_{1}\right)$ is developed?

- Train BERT-base uncased model (T_{2}) on lyrics
- Train CNN model $\left(A_{1}\right)$ on audio signal
- System M_{1} is implemented as the fusion of A_{1} and T_{2} with a common classifier of two fully connected layers

Results

- Lyric Analysis Subsystem We trained BERT model $\left(T_{2}\right)$ and compared its results with several text analysis techniques

Model	Embedding Method	Loss	Accuracy $\%$
T_{1}^{\prime}	BoW	1.287	65.49
T_{1}^{\prime}	TF-IDF	1.381	67.98
T_{1}	Word2Vec	1.262	41.66
T_{1}	GloVe	1.064	53.33
T_{2}	Bert	1.353	69.11

Results

- Audio Analysis Subsystem

We trained CNN model $\left(\mathrm{A}_{1}\right)$ and experimented with different possible feature combinations

Feature Combination	Accuracy \%
Mel	64.97
Mel, Log-Mel	68.38
Mel, Chroma, Tonnetz, Spectral Contrast	60.86
Log-Mel, Chroma, Tonnetz, Spectral Contrast	58.96
MFCC, Chroma, Tonnetz, Spectral Contrast	65.36
Mel, Log-Mel, MFCC, Chroma, Tonnetz	69.77
Mel, Log-Mel, MFCC, Chroma, Tonnetz, Spec- tral Contrast	70.34

Results

- Fuse Analysis System

We used the already trained subsytems to train our multichannel model (M_{1})
And compared its results with the previous models

Model	Loss	Accuracy \%	Computational Time
T_{1}^{\prime}	1.381	67.98	0 m 25.391 s
T_{2}	1.353	69.11	18 m 12.444 s
A_{1}	0.743	70.51	80 m 13.064 s
M_{1}	0.156	94.58	3 m 38.551 s

Results

Conclusion

- BERT outperforms simple text analysis techniques
- The combination of all six audio features has the best performance on the task
- Fusing the two subsystem into one complex system achieves huge improvement in performance and outperforms single channel systems

