

Open Lab on Human Robot Interaction

Mobile Phone Surface Defect Detection Based on Improved Faster R-CNN

Tao Wang Chan Zhang taowang@stu.pku.edu.cn can.zhang@pku.edu.cn

Runwei Ding dingrunwei@pku.edu.cn yangge@szpku.edu.cn

Ge Yang

Key Laboratory of Machine Perception

Presenter: Tao Wang

Outline

- Introduction
- Proposed Method
- Experiments
- Conclusion

Introduction

Background

Mobile phone surface defect (MPSD) is an inevitable factor in the production process of mobile phones. Efficient defect detection can provide enterprises with production information in time to improve production technology.

- Manual inspection
- Detection based on image processing methods
- Defect detection based on deep learning methods

Introduction

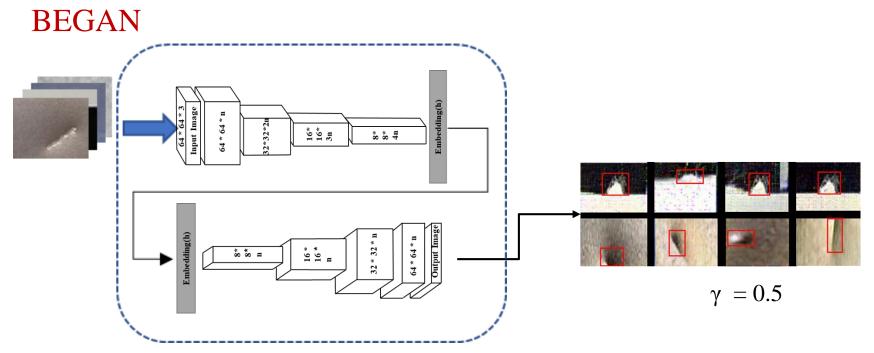
> Motivation

At present, Mobile phone surface defect detection faces two main challenges:

- the number of defective samples in mobile phone production is very small, and it is difficult to obtain high-quality defective sample images.
- size of the defect is very small.

The Deep Learning is rarely expanded into the field of MPSD detection. Therefore, we proposed a deep learning based method to cope with these problems.

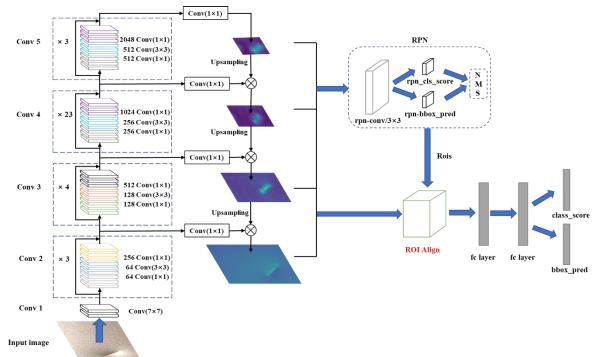
Method



- Data from dataset are augmented using general methods (e.g. flipping, rotation, and color jitter.) off-line.
- Augmented data are input into BEGAN
- A hyperparameter γ is provided in BEGAN, this hyper-parameter can balance the diversity of the image and the quality of the generation.

Method

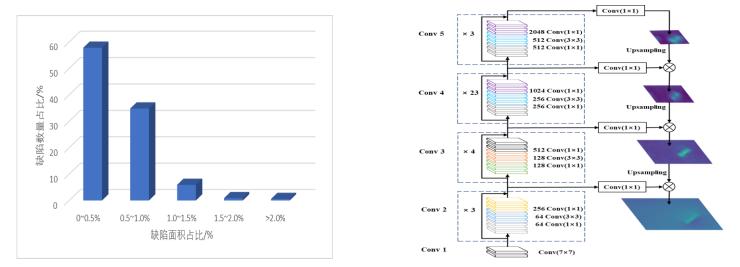
Improved Faster R-CNN



- The overall architecture of Improved Faster R-CNN, which consist of three parts: feature extract network, region proposal network and classification and regression network.
- To extract more features, we take ResNet-101 as backbone

Method

FPN



- A statistics of the dataset we made show that 58% of the defects are very small, accounting for only 0.5% of the image size.
- The original Faster R-CNN uses the last single feature map. And its resolution is greatly lost in the convolution process.
- To detect the small defects, FPN makes the feature map multi-scale, which constructed a network structure with strong semantic expression capabilities at all scales

Experiments

Dataset: MPSD

- We collects 50 defective screens and 30 defective mobile phone cases. e samples are taken at different angles and light sources. A total of 1250 defective pictures are taken.
- After the general data augmentation, 2495 samples are obtained. •
- Expanding the data through BEGAN, the total sample size increased by 2258.

(a) Point defect

(c) Screen scratch

(b) Edge defect

Dataset	Point defect	Edge defect	Screen scratch	Stripe dent	Total
Original number	560	560	670	705	2495
Augment number	523	536	583	616	2258
Total	1083	1096	1253	1321	4753

TABLE I DATASET DETAIL

(d) Stripe dent

TABLE II COMPARED WITH TRADITIONAL METHODS

Compared with traditional methods

Method	mAP	Point defect	Edge defect	Screen scratch	Stripe dent	Inference time
HOG+SVM	63.45%	73.88%	62.33 %	48.52%	69.06%	-
LBP+SVM	72.39%	77.52%	75.21%	61.80%	75.03%	-
Faster R-CNN(VGG16)	90.84%	90.81%	90.96%	91.44%	90.15%	0.111s
Faster R-CNN(ResNet101)	93.92%	95.75%	93.61%	93.97%	92.35%	0.197s
SSD-300	90.47%	90.82%	89.58%	90.17%	91.31%	0.016s
Yolov3(Darknet-53)	92.47%	94.36%	88.63%	92.23%	94.45%	0.029s
Our method	99.43%	99.39%	99.99 %	99.45%	98.89%	0.208s

Ablation Experiment

TABLE III Ablation Experiment

Method	FPN	RoI Align	Data Augmentation	mAP
Faster R-CNN(ResNet101)	Х	×	×	93.92%
	\checkmark	×	×	96.43%
	\checkmark	\checkmark	×	97.36%
	\checkmark	\checkmark	\checkmark	99.43%

• we can see that the proposed method obtains the highest mAP at 99.43%

• Compared with original Faster R-CNN. Proposed method can largely increase performance

Experiments

≻To achieve high-quality feature extraction for small size mobile phone defects.

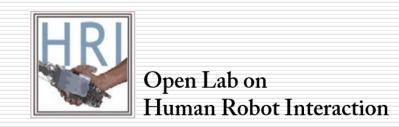
► FPN► To generate diverse defect images.

BEGAN

 \succ To prevent the regression from being affected by the quantization operation.

RoI Align

Experiments MPSD dataset prove remarkable performance of our method.



Mobile Phone Surface Defect Detection Based on Improved Faster R-CNN

Tao WangChan Zhangtaowang@stu.pku.edu.cncan.zhang@pku.edu.cn

Runwei Ding dingrunwei@pku.edu.cn

Ge Yang yangge@szpku.edu.cn

Thanks!

Presenter: Tao Wang