A Spectral Clustering on Grassmann Manifold via Double Low Rank Constraint

Xinglin Piao $^{1,2,4},$ Yongli Hu
³, Junbin Gao 5, Yanfeng Sun 3, Xin Yang
4, Baocai Yin 3,1

¹Peng Cheng Laboratory, China; ²Peking University Shenzhen Graduate School, China; ³Beijing University of Technology, China; ⁴Dalian University of Technology, China; ⁵The University of Sydney Business School, Australia

December 10, 2020

Xinglin Piao 1,2,4 , Yongli Hu 3 , JunbirA Spectral Clustering on Grassmann

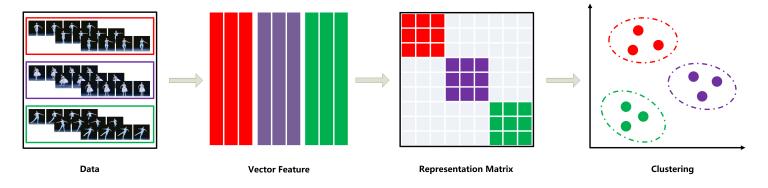
December 10, 2020

• Background

- Objective Function Formulation
- Experimental results
- Conclusion

2 / 14

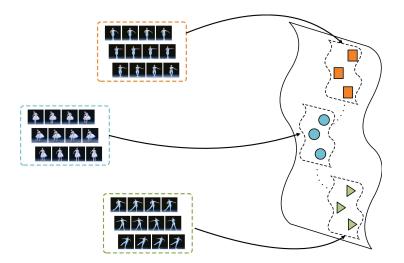
Background



Low rank and spectral clustering method:

- Learning representation matrix from data based on low rank representation
- Using NCut or K-Means method for clustering results
- Low rank representation based clustering method with linear Euclidean distance (ICML 2010, ICCV 2011)

3



Grassmann Manifold:

- Constructing the Grassmann manifold feature for video or imageset data
- The set of Grassmann manifold data has non-linear structure
- Low rank representation based clustering method on Grassmann manifold with non-linear distance (ACCV 2014, ACM TKDD 2018)

Nuclear norm based low rank constraint:

$$\|\mathbf{X}\|_* = \sum_{i=1}^n \sigma_i(\mathbf{X})$$

- This low rank constraint would deviate the optimal solution and lead to suboptimal solution
- Traditional nuclear norm treats all singular values equally and prefers to punish the larger singular values than the small ones
- Smaller singular values always represent noise and would decrease the clustering accuracy

5 / 14

The main contributions of our paper are following:

- Proposing a novel low rank representation model on Grassmann for video and imageset data clustering;
- Nuclear norm and bilinear factorization are combined as double low rank representation to reveal low-rank property more exactly;
- An effective algorithm is proposed to solve the complicated optimization problem of the proposed model.

Traditional low rank representation model:

For a set of Grassmann manifold samples $\mathcal{Y} = \{\mathbf{Y}_1, \mathbf{Y}_2, ..., \mathbf{Y}_n\}$, we could formulate the low rank based clustering model with traditional convex nuclear norm:

$$\min_{\mathbf{X}} \quad \lambda \|\mathbf{X}\|_* + \sum_{i=1}^n \|\mathbf{Y}_i \ominus \biguplus_{j=1}^n \mathbf{Y}_j \circledast x_{ji}\|_{\mathcal{M}},$$

where the first term is the low rank constraint, the second term is the reconstructed term for Grassmann manifold samples, and $\mathbf{X} \in \mathbb{R}^{n \times n}$ represents the coefficient matrix.

December 10, 2020

7 / 14

Objective Function Formulation

Double Low Rank Constraint:

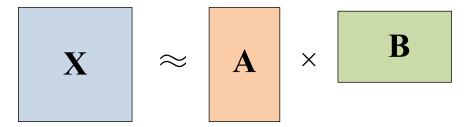


Figure 1: The illustration of bilinear representation.

$$\min_{\mathbf{X},\mathbf{A},\mathbf{B}} \quad \lambda \|\mathbf{X}\|_* + \sum_{i=1}^n \|\mathbf{Y}_i \ominus \bigoplus_{j=1}^n \mathbf{Y}_j \circledast x_{ji}\|_{\mathcal{G}} + \alpha(\|\mathbf{A}\|_F^2 + \|\mathbf{B}\|_F^2),$$

s.t. $\mathbf{X} = \mathbf{AB},$

where $\mathbf{A} \in \mathbb{R}^{n \times r}$, $\mathbf{B} \in \mathbb{R}^{r \times n}$, and r is the expected rank of matrix \mathbf{X} . We call this model as the Double Low Rank constraint based clustering model on Grassmann manifold (G-DLR)

Nonlinear Metric for Grassmann manifold data:

$$\operatorname{dist}_{g}(\mathbf{Y}_{1}, \mathbf{Y}_{2}) = \frac{1}{2} \|\Pi(\mathbf{Y}_{1}) - \Pi(\mathbf{Y}_{2})\|_{F},$$

where $\|\mathbf{X}\|_F = \sqrt{\sum_{i=1,j=1}^n x_{ij}^2}$ represents the Frobenius norm, $\Pi(\cdot)$ is a mapping function defined as below:

$$\Pi: \mathcal{G}(p,m) \longrightarrow Sym(m), \Pi(\mathbf{Y}) = \mathbf{Y}\mathbf{Y}^T,$$

where Sym(m) represents the *m*-dimension symmetric matrix space.

The optimization:

$$\min_{\mathbf{X},\mathbf{A},\mathbf{B}} \quad \lambda \|\mathbf{X}\|_* + \sum_{i=1}^n \|\mathbf{Y}_i \ominus \bigoplus_{j=1}^n \mathbf{Y}_j \circledast x_{ji}\|_{\mathcal{G}} + \alpha(\|\mathbf{A}\|_F^2 + \|\mathbf{B}\|_F^2),$$

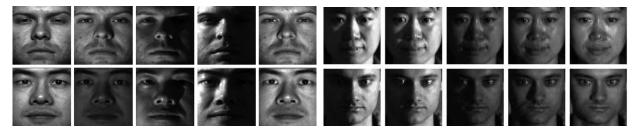
s.t. $\mathbf{X} = \mathbf{AB}.$

By denoting $g_{ij} = \operatorname{tr}((\mathbf{Y}_j^T \mathbf{Y}_i)(\mathbf{Y}_i^T \mathbf{Y}_j))$ and $\mathbf{G} = \{g_{ij}\}_{n \times n} \in \mathbb{R}^{n \times n}$, we have:

$$\min_{\mathbf{X},\mathbf{A},\mathbf{B}} \quad \lambda \|\mathbf{X}\|_* + \operatorname{tr}(\mathbf{X}^T \mathbf{G} \mathbf{X}) - 2\operatorname{tr}(\mathbf{G} \mathbf{X}) + \alpha(\|\mathbf{A}\|_F^2 + \|\mathbf{B}\|_F^2).$$

s.t. $\mathbf{X} = \mathbf{A} \mathbf{B}.$

Experimental Datasets



(a)

(b)

(c)

Figure 2: Three datasets for experiments: (a) Extended Yale B dataset; (b) CMU-PIE face dataset; (c) Traffic dataset.

Experimental Results

Convergence analysis

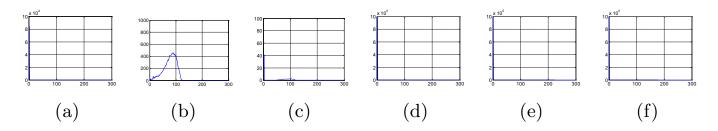


Figure 3: The convergence curves of G-DLR on Extended Yale B dataset.

Results analysis:

The clustering results are measured by the clustering Accuracy (ACC).

Table 1: The accuracy results of various methods on three datasets.

Method	SSC	LRR	LS3C	SCGSM	G-KM	G-CLRSR	G-LRR	G-PSSVLR	G-DNLR	G-DLR
Extended Yale B	0.4032	0.4659	0.2461	0.7946	0.8365	0.8194	0.8135	0.9035	0.9749	0.9957
CMU-PIE	0.5231	0.4034	0.2761	0.5732	0.6025	0.6289	0.6153	0.6213	0.6618	0.7219
Traffic	0.5920	0.6822	0.7169	0.6562	0.7470	0.8438	0.8132	0.8592	0.8300	0.8774
avg.	0.5061	0.5172	0.4130	0.6747	0.7287	0.7640	0.7473	0.7947	0.8222	0.8650

- Proposing a new low rank representation model on Grassmann manifold for video or imageset clustering task;
- In the proposed model, reweighted approach and non-convex function are combined to seek a better low-rank representation matrix instead of the traditional convex nuclear norm;
- An effective algorithm is proposed to solve the complicated optimization problem of the proposed model.

Thank You!

piaoxl@pcl.ac.cn