Improved Residual Networks for Image and Video Recognition

Ionut Cosmin Duta

Li Liu Fan Zhu

Ling Shao

Inception Institute of Artificial Intelligence (IIAI)

Problem Statements

- The degradation problem is still an open issue for deep learning (including in ResNets): with the increasing of network depth, optimization/learning difficulties grow as well.
- Projection shortcuts in ResNets can play an important role in the network architecture, as they are found on the main information propagation path and can thus directly perturb the signal or cause information loss.
- In the original ResNet, in the bottleneck building block the only convolution responsible for learning spatial filters receives the least number of input/output channels.

Contributions

- We introduce a network architecture for residual learning based on stages
- We propose an improved projection shortcut that reduces the information loss
- ➤We present a building block that considerably increases the spatial channels for learning more powerful spatial patterns

We successfully train a 404-layer deep CNN on the ImageNet dataset and a 3002-layer network on CIFAR-10 and CIFAR-100

Improved information flow through the network

Improved projection shortcut

Grouped building block

Proposed architectures

stage	output	ResNet-	50		ResGroupFix-50)	ResGroup-50	
eterting	112×112	7×7, 64, str	ride 2		7×7, 64, stride 2	2	7×7, 64, stride	2
starting	56×56	3×3 max pool	, stride2	3	$\times 3 \text{ max pool, stri}$	ide2	3×3 max pool, stri	ide2
		1×1, 64			1×1, 256		1×1, 256	
1	56×56	3×3, 64	×3		3×3, 256, G=64	$\times 3$	3×3, 256, G=8	$\times 3$
		1×1, 256			1×1, 128		1×1, 128	
		1×1, 128			$1 \times 1, 512$		1×1, 512	
2	28×28	3×3, 128	×4		3×3, 512, G=64	$\times 4$	3×3, 512, G=16	$\times 4$
		1×1, 512			$1 \times 1, 256$		$1 \times 1, 256$	
		1×1, 256	1	Γ	1×1, 1024		1×1, 1024	1
3	14×14	3×3, 256	×6		3×3, 1024, G=64	$\times 6$	3×3, 1024, G=32	×6
		1×1, 1024	L	Ц	1×1, 512		1×1, 512	
		[1×1, 512	1	I٢	1×1, 2048		[1×1, 2048	1
4	7×7	3×3, 512	×3		3×3, 2048, G=64	×3	3×3, 2048, G=64	×3
		1×1, 2048	3		1×1, 1024		1×1, 1024	
ending	1×1	global avg	pool		global avg pool		global avg pool	
chung	1/1	1000-d f	fc		1000-d fc		1000-d fc	
# pa	arams	25.56 ×	10^{6}		23.37×10^{6}		24.89×10^{6}	
FL	OPs	4.14 × 1	l0 ⁹		4.30×10^9		5.43×10^9	

Validation error rates (%) comparison results of iResNet on ImageNet

Network		50) layers		101 layers					
Network	top-1	top-5	params	GFLOPs	top-1	top-5	params	GFLOPs		
baseline [6]	23.88	7.06	25.56	4.14	22.00	6.10	44.55	7.88		
pre-activation [7]	23.77	7.04	25.56	4.14	22.11	6.26	44.55	7.88		
ResStage	23.25	6.81	25.56	4.14	21.75	6.01	44.55	7.88		
iResNet	22.69	6.46	25.56	4.18	21.36	5.63	44.55	7.92		
		15	2 layers		200 layers					
	top-1	top-5	params	GFLOPs	top-1	top-5	params	GFLOPs		
baseline [6]	21.55	5.74	60.19	11.62	22.45	6.39	64.67	15.16		
muc activation [7]	01 41	F 70	60 10	11 60	01 00	5 67	61 67	15 16		
pre-activation [7]	21.41	5.78	60.19	11.62	21.29	0.07	04.07	10.10		
ResStage	21.41 21.03	$5.78 \\ 5.65$	60.19 60.19	11.62 11.62	21.29	5.57	64.67 64.67	15.16 15.16		

Training and validation curves on ImageNet for ResNet and iResNet on 50, 101, 152 and 200 layers.

Error rates results of iResNet on ImageNet with extreme depth: 302 and 404 layers. P stands for parameters.

Network	top-1	top-5	P/GFLOPs
iResNet-302	20.45	5.28	96.59/22.67
iResNet-404	20.30	5.26	124.5/30.15

.

Extreme depths

Classification error (%) on CIFAR-10/100. For 164 layers train the model five times and show "best(mean±std)". P stands for parameters (in millions).

Network		164 layers		100	1 layers	200	0 layers	3002 layers		
Network		top-1	P/GFLOPs	top-1	P/GFLOPs	top-1	P/GFLOPs	top-1	P/GFLOPs	
CIFAR-10:										
baseline [6]	5.23 ((5.54 ± 0.37)	1.70/0.26	7.43	10.33/1.59	fail	20.62/3.17	fail	30.93/4.75	
iResNet	4.80	(5.00 ± 0.14)	1.70/0.26	4.61	10.33/1.59	4.40	20.62/3.17	4.95	30.93/4.75	
CIFAR-100:										
baseline [6]	23.86 ((24.48 ± 0.39)	1.73/0.26	26.98	10.35/1.59	fail	20.65/3.17	fail	30.96/4.75	
iResNet	22.26	(22.37 ± 0.13)	1.73/0.26	20.92	10.35/1.59	21.12	20.65/3.17	21.46	30.96/4.75	

Video recognition error rates (%), parameters are in millions.

Notwork		Kin	etics-400)	Something-Something-v2						
Network	top-1	top-5	params	GFLOPs	top-1	top-5	params	GFLOPs			
baseline3D-50 [6]	37.01	15.41	47.00	93.26	46.50	19.02	46.54	93.26			
iResNet3D-50	33.91	13.36	47.00	93.93	45.56	17.73	46.54	93.93			

Validation error rates (%) comparison results of ResGroup on ImageNet.

Notwork		layers			101	layers		152 layers				
Network	top-1	top-5	params	GFLOPs	top-1	top-5	params	GFLOPs	top-1	top-5	params	GFLOPs
baseline [6]	23.88	7.06	25.56	4.14	22.00	6.10	44.55	7.88	21.55	5.74	60.19	11.62
ResNeXt [35]	22.44	6.25	25.03	4.30	21.03	5.66	44.18	8.07	20.98	5.48	59.95	11.84
ResGroupFix	21.96	6.15	23.37	4.30	20.94	5.56	43.79	8.33	20.70	5.48	60.61	12.35
ResGroup	21.73	5.94	24.89	5.43	20.98	5.46	47.81	9.94	20.81	5.48	66.99	14.70
iResGroupFix	21.88	5.99	23.37	4.47	20.92	5.54	43.79	8.49	20.75	5.51	60.61	12.53
iResGroup	21.55	5.75	24.89	5.60	20.55	5.45	47.81	10.11	20.34	5.20	66.99	14.87

Proposed backbones on SSD object detector with 300×300 input image size (results on COCO val2017).

Deelshope	Avg. P	recisio	n, IoU:	Avg.	Precisio	on, Area:	Avg.	Recall,	#Dets:	Avg.	Recall,	Area:		CEL OR
Dackbolle	0.5:0.95	5 0.5	0.75	S	Μ	L	1	10	100	S	М	L	params	GFLOPs
ResNet-50 [6]	26.20	43.97	26.96	8.12	28.22	42.64	24.50	35.41	37.07	12.61	40.76	57.25	22.89	20.92
iResNet-50	27.74	45.85	28.51	8.52	30.07	44.62	25.29	36.90	38.51	13.28	42.79	58.57	22.89	20.99
iResGroupFix-50	28.90	47.44	29.99	9.70	31.49	45.83	25.97	37.84	39.52	14.63	44.17	59.52	21.13	18.61
iResGroup-50	29.56	48.3 8	30.87	10.33	32.52	46.62	26.40	38.49	40.24	15.10	044.82	60.20	22.66	21.62
ResNet-101 [6]	29.58	47.69	30.80	9.38	31.96	47.64	26.47	38.00	39.64	14.09	43.54	61.03	41.89	48.45
iResNet-101	30.92	49.50	32.29	10.05	34.27	49.13	27.15	39.34	41.08	15.21	45.93	61.90	41.89	48.49
iResGroupFix-101	31.64	50.70	33.28	11.21	34.91	50.20	27.94	40.41	42.22	16.84	46.99	63.64	41.55	48.25
iResGroup-101	32.81	51.78	34.55	11.81	36.56	51.72	28.37	741.43	43.22	17.20)48.54	64.08	45.58	54.87

Single-crop error rates (%) comparison with other networks on ImageNet validation set. † some approaches use larger image crops than 320×320, Inception family uses 299×299.

Method	224>	<224	$320{ imes}320^{\dagger}$		
Method	top-1	top-5	top-1	top-5	
ResNet-200 [7]	21.7	5.8	20.1	4.8	
Inception-v3 [31]	-	-	21.2	5.6	
Inception-v4 [29]	-	-	20.0	5.0	
Inception-ResNet[29]	-	-	19.9	4.9	
DenseNet-264 [11]	22.15	6.12	-	-	
Attention-92 [32]	-	-	19.5	4.8	
NASNet-A [36]	-	-	17.3	3.8	
SENet-154 [10]	18.68	4.47	17.28	3.79	
iResNet-200	20.52	5.36	19.36	4.56	
iResNet-404	20.30	5.26	19.35	4.61	
iResGroup-152	20.34	5.20	19.09	4.59	

Conclusion

- We proposed an improved version of residual networks with improved learning convergence and recognition performance without increasing the model complexity.
- Our improvements address all three main components of a ResNet: information propagation through the network, the projection shortcut, and the building block.
- Our proposed approach facilitates training of extremely deep networks, showing no optimization issues when training networks with over 400 layers (on ImageNet) and over 3000 layers (on CIFAR-10/100).

Thank you!