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UAV Localization in Corridor Environments Introduction

Localization of Unmanned Aerial Vehicles in Corridor
Environments using Deep Learning

A DNN based model is proposed for safe localization and subsequent navigation of
UAV in indoor corridor environments.

Salient features
Autonomous UAV navigation in indoor corridors
Avoid collision with side and front wall
Exploits corridor’s properties:
the imaginary central bisector line (CBL)
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UAV Localization in Corridor Environments Introduction

Contributions

We propose a method that uses two different DNN models for UAV localization
1st DNN: UAV’s deviation from CBL (translation)
2nd DNN: UAV’s orientation.

Our algorithm generates necessary control commands to keep the UAV along the
CBL and continuously monitors its position to rectify any deviation.

We propose a new corridor dataset, UAVCorV1 [1], which contains images as
captured from the UAV’s front camera at different positions in a number of
corridors.

3 / 28



. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

UAV Localization in Corridor Environments Introduction

Central Bisector Line (CBL)

CBL is an imaginary line
that runs at the middle of
the corridor’s floor and is
parallel to the side walls.
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UAV Localization in Corridor Environments Dataset Creation

Dataset Creation

80 different corridors; 59← training and 21← testing.

images are captured at an approx height of 1m from the floor.
Three locations (center, left, and right) are selected for one imaginary horizontal
line in a corridor (⊥ to CBL).
At each location the UAV is oriented towards center, left, and right w.r.t. itself.
Hence, we have nine images for a given horizontal line.
Such horizontal lines are chosen at regular interval along the corridor length and
the images thus obtained accommodate all possible scenarios.
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UAV Localization in Corridor Environments Dataset Creation

Figure 1: 9 different possible alignments over a horizontal line perpendicular to the CBL. 6 / 28
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UAV Localization in Corridor Environments Dataset Creation

Obtaining CBL

(a) Actual image (b) Image with markers (c) CBL on image plane

Figure 2: Process of obtaining the CBL on the image plane using markers.
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UAV Localization in Corridor Environments Dataset Creation

Dataset Creation

Labeled Data Generation: Translational Shift
It has been observed that when the UAV is on the left side of the CBL, the red
line on the image plane forms an acute angle with the bottom image boundary.
In case the UAV is on the right side of the CBL, the angle formed is obtuse.
And when the UAV is at the center, it forms a right angle.

For the corresponding actual image in the dataset, these angles (in radians), are
stored as the target values. It may be noted that these angles remain the same
irrespective of the UAV tilt.
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UAV Localization in Corridor Environments Dataset Creation

Dataset Creation

(a) Left side of CBL (b) Right side of CBL (c) On the CBL

Figure 3: Three different positions of the UAV over a horizontal line perpendicular to the CBL.
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UAV Localization in Corridor Environments Dataset Creation

Dataset Creation (Labeled Data Generation: Orientation)

(a) Aligned with the CBL (b) Left tilted (c) Right tilted

Figure 4: Three different orientations of the UAV, when it is situated on the CBL.
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UAV Localization in Corridor Environments Dataset Creation

Dataset Creation

For each image, the dataset now contains two target values
Angle of the CBL (for rectifying the translational deviation)
Distance of the CBL (for rectifying the rotational deviation).

We have shared this dataset as a public dataset, named UAVCorV1 [1]. This dataset
contains 35000 training and 600 testing images for angle, and 21000 training and 300
testing images for distance, and their corresponding target values.
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UAV Localization in Corridor Environments Dataset Creation

UAV Navigation

UAV navigation is a two-step process
Rectifying the translational deviation.

Rectifying the rotational deviation.

Both processes are achieved by processing the images from the UAV front camera
through pre-trained DNNs to predict the deviations.
Although the architecture of both the networks remains the same, the target
output differs; one is for angle in radian and the other is for normalized pixel
distance.
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UAV Localization in Corridor Environments Network Structure

Network Structure

Pre-trained models:
AlexNet, VGGNet, InceptionNet, ResNet-50,101,152, DenseNet-161,201.

Dataset: Our custom dataset UAVCorV1
The last fully connected layer of the pre-trained model is replaced by a few
convolution layers to decrease the output feature map size.
At the end of the network, one fully connected layer is appended to obtain 1× 1
output.
The input image resolution is 320× 180.
The angle lies in the range [0, π] and the normalized pixel distance lies in the
range of [0, 1].
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UAV Localization in Corridor Environments Network Structure

Network Structure

Figure 5: Architectural flow of the proposed DNN based corridor navigation model
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UAV Localization in Corridor Environments Network Structure

Table 1: Various pre-trained models and their augmented convolution layers to train our custom dataset. In the 2D convolution
operation, Conv2d(Cin, Cout, k × k), Cin, Cout, and k represent the number of input channels, number of output channels, and kernel
size respectively.

Input Pre-trained
Models

Augmented
Convolution Layers

Augmented last Fully
connected layer Output layer

320 × 180

AlexNet [2] no augmentation
of convolution layer 4096 × 1

1 × 1VGG-16 [3]
Conv2d(512, 1024, 1 × 1)
Conv2d(1024, 128, 5 × 5)
Conv2d(128, 16, 1 × 1)

96 × 1

InceptionV3 [4]

Main: Conv2d(2048, 1024, 1 × 1)
Conv2d(1024, 512, 2 × 2)
Conv2d(512, 128, 3 × 3)

Aux: Conv2d(768, 128, 4 × 4)
Conv2d(128, 32, 2 × 2)

Main: 256 × 1
Aux :640 × 1

ResNet-50 [5] Conv2d(2048, 1024, 1 × 1)
Conv2d(1024, 128, 5 × 5)

Conv2d(128, 8, 1 × 1)
96 × 1

ResNet-101 [5]

ResNet-152 [5]

DenseNet-201 [6]
Conv2d(1920, 1024, 1 × 1)
Conv2d(1024, 128, 5 × 5)
Conv2d(128, 16, 1 × 1) 96 × 1

DenseNet-161 [6]
Conv2d(2208, 1024, 1 × 1)
Conv2d(1024, 128, 5 × 5)
Conv2d(128, 16, 1 × 1) 15 / 28
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UAV Localization in Corridor Environments Network Structure

Loss Function

Mean Absolute Error (MAE) is chosen as the loss function to prevent the learning
process of the DNN from being severely affected by large deviations between real and
predicted values.

Mean Absolute Error

MAE(Ŷ, Y) = 1
n

n∑
i=1
|ŷi − yi|,

where Ŷ = {ŷi}n
i=1 and Y = {yi}n

i=1 denote the predicted and target values for a mini
batch of size n, respectively.

16 / 28
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UAV Localization in Corridor Environments Training

Input Pre-processing

Before processing, the original BGR pixel values, which lie in the range [0, 255], are first
normalized to the range [0, 1].

Each of the Blue, Green and Red channels are then normalized by the corresponding mean
(µb = 0.406, µg = 0.456, µr = 0.485) and standard deviation (σb = 0.225, σg = 0.224, σr =
0.229) of the ImageNet classification dataset [7].

Prediction of translational deviation requires images from all possible locations of the corridor,
however rotational deviation requires images when the UAV is at the center and tilted in all
three orientations (left, right or center).
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UAV Localization in Corridor Environments Control Command Generation

Control Command Generation
Algorithm 1: Control command generation
Input: Image From UAV front camera: img
Output: UAV direction: [pitch, roll, yaw]

1 angle = TrainedModelForAngle(img)
if angle out of bound for continously 1 second then

2 Land the UAV
3 if angle ≈ 90◦ then
4 dist = TrainedModelForDistance(img)

if dist ≈ 0.5 then
5 Actuate UAV in Pitch Forward
6 else if dist < 0.5− δ then
7 Actuate UAV in Yaw Left until dist ≈ 0.5
8 else
9 Actuate UAV in Yaw Right until dist ≈ 0.5

10 else if angle < 90◦ − δ then
11 Actuate UAV in Roll Right until angle ≈ 90◦

12 else
13 Actuate UAV in Roll Left until angle ≈ 90◦

14 return [pitch, roll, yaw]

18 / 28
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UAV Localization in Corridor Environments System Setup

System Setup

We used PyTorch deep learning library to implement our deep networks.

Training is performed with GTX 1080 Ti graphics card, which has a memory of 11GB.

ILSVRC [8] pretrained weights are used for initializing the standard state-of-the-art networks.

Weights for other convolution layers are initialized from a normal distribution N (0,
√

2/ck2),
where k represents the filter size and c is the number of output channels of the convolution
operation.
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UAV Localization in Corridor Environments Results

Evaluation Metrics
Evaluation is done on the UAVCorV1 labeled test set, which contains 600 images for angle and 300
images for distance, respectively.

Three different evaluation metrics

Mean Squared Error : MSE(Ŷ, Y) = 1
n

n∑
i=1

(ŷi − yi)2,

Mean Absolute Error : MAE(Ŷ, Y) = 1
n

n∑
i=1
|ŷi − yi|,

Mean Relative Error : MRE(Ŷ, Y) = 1
n

n∑
i=1

|ŷi − yi|
yi

.

where Ŷ = {ŷi}n
i=1 and Y = {yi}n

i=1 denote the predicted and target values for a mini batch of size
n, respectively.
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UAV Localization in Corridor Environments Results

Experimental Results (Translational Deviation)
Quantitative Comparison

Table 2: Evaluation metrics for the prediction of translational deviation of the UAV using 9 different
pretrained networks over 600 test images.

Pre-trained
Model

MSE MAE MRE

AlexNet 0.21997 1.72831 1.39280
VGG-16 0.47318 2.84597 2.41795

InceptionV3 0.11929 1.44906 1.20959
ResNet-50 0.11253 1.50321 1.18916
ResNet-101 0.11103 1.46875 1.17946
ResNet-152 0.11032 1.41558 1.16529

DenseNet-201 0.12383 1.79144 1.42709
DenseNet-161 0.05791 1.32693 1.08712
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UAV Localization in Corridor Environments Results

Experimental Results (Translational Deviation)
Qualitative Comparison

Figure 6: Qualitative performance evaluation of translational deviation for different corridor locations
of National Institute of Technology, Rourkela, India. Ground truth and predicted values are given in
degree. GT: Ground truth, PR: Predicted.

TIIR Building Physics
Department

Life Science
Department

Computer Science
Department

GT: 90.720◦

PR: 90.303◦
GT: 47.055◦

PR: 46.707◦
GT: 90.000◦

PR: 91.142◦
GT: 136.507◦

PR: 135.253◦
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UAV Localization in Corridor Environments Results

Experimental Results (Rotational Deviation)
Quantitative Comparison

Table 3: Evaluation metrics for the prediction of rotational deviation of the UAV using 9 different
pretrained networks over 300 test images.

Pre-trained
Model

MSE MAE MRE

AlexNet 5.5677 27.0064 54.1467
VGG-16 1.1928 4.6213 13.5329

InceptionV3 0.0687 3.1364 10.4852
ResNet-50 0.0473 2.7485 9.0729
ResNet-101 0.1186 4.2163 14.6806
ResNet-152 0.0662 3.4258 10.8230

DenseNet-201 0.0828 3.6442 12.1421
DenseNet-161 0.0326 2.5060 1.557
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UAV Localization in Corridor Environments Results

Experimental Results (Rotational Deviation)
Qualitative Comparison

Figure 7: Qualitative performance evaluation of rotational deviation for different corridor locations
of National Institute of Technology, Rourkela, India. Ground truth and predicted values are in the
range [0, 1]. GT: Ground truth, PR: Predicted.

TIIR Building Physics
Department

Life Science
Department

Computer Science
Department

GT: 0.488
PR: 0.491

GT: 0.805
PR: 0.808

GT: 0.547
PR: 0.528

GT: 0.167
PR: 0.163
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UAV Localization in Corridor Environments Results

Real World Navigation Experiments

Parrot AR Drone quadcopter is used for validation purpose.

Image transmission delay through ROS is about 0.21s. Our DNN model prediction takes about
0.08s for measuring both translational and rotational deviation simultaneously. Also, the time
required for communicating a control command through ROS is about 0.21s.
Hence, our algorithm can process at most two frames in one second, which is sufficient to
generate safe control commands and navigate without collision.
It may be noted that apart from our network prediction, different factors, such as control and
state estimation affect the actual UAV flight in real-world scenarios.
We tested our algorithm across 50 trials in 10 different corridors, out of which 43 trails were
found to be successful.
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UAV Localization in Corridor Environments Conclusions

Summary

We have proposed a DNN based UAV localization algorithm, which enables the UAV to navigate
safely inside corridors environments.

Unlike previous methods, where the DNN models were designed to predict flight commands
directly, our proposed method makes use of an important characteristic of a corridor, the CBL,
to generate commands.
We designed a single DNN and trained it separately for two tasks; (a) prediction of translational
deviation of the UAV from the CBL, and (b) prediction of rotational deviation of the UAV with
respect to the CBL.
We also provide a corridor dataset, UAVCorV1, which has the corridor images labeled against
translational and rotational deviations.
The proposed vision based navigation algorithm can be implemented in many industrial
fields, such as inspection of disaster-hit buildings, autonomous monitoring of industrial plants,
inspection of hazardous places inside buildings, and many more.
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