

Facial Expression Recognition By Using a Disentangled Identity-Invariant Expression Representation ICPR 2020

Kamran Ali and Charles E. Hughes

Synthetic Reality Lab, CS/CECS, University of Central Florida, USA

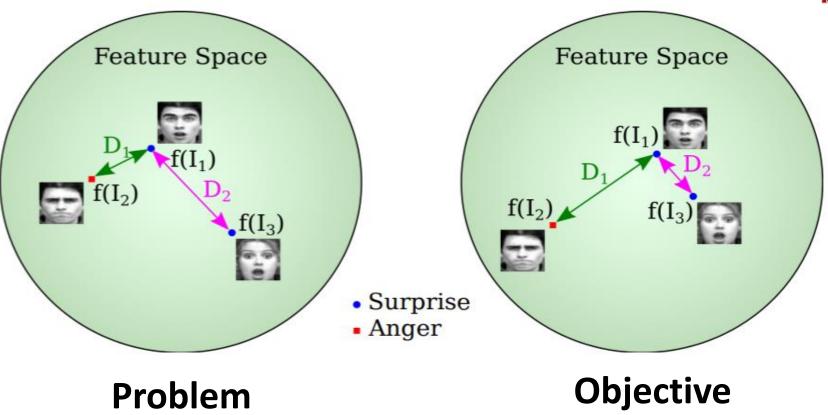
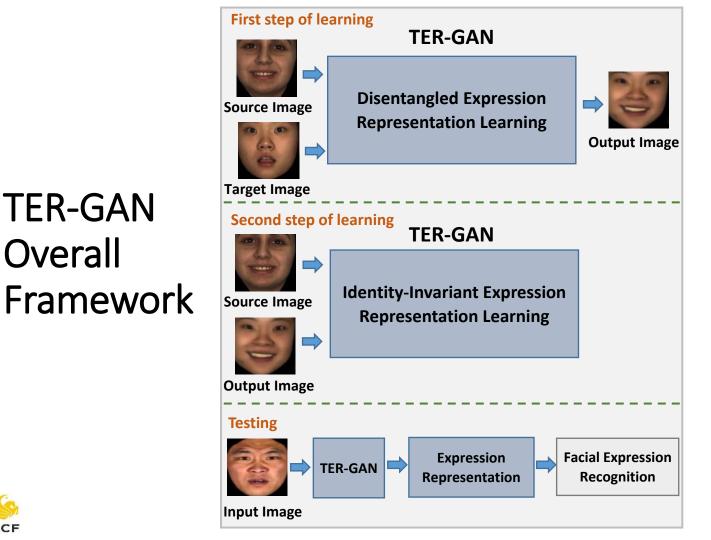
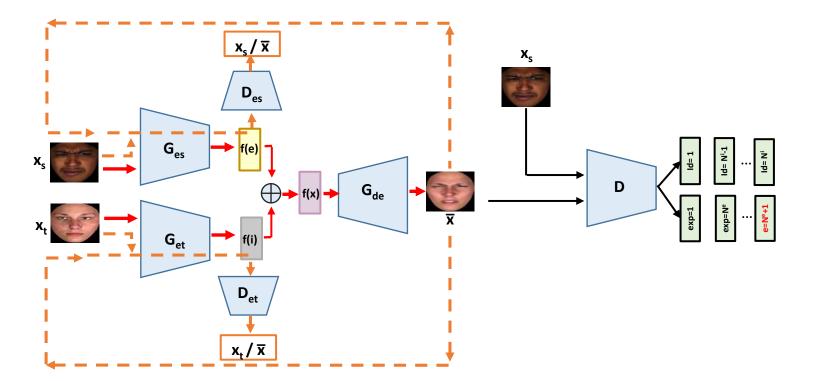


Image taken from the IACNN paper by Zibo et al. FG 2017


Transfer-based Expression Recognition Generative Adversarial Network (TER-GAN)

- Disentangle expression features from the identity information
- Identity-invariant expression representation learning for FER



Overall

Architecture of TER-GAN

Discriminator: The main objective of D is three-fold:

- To classify between real and fake images
- To categorize facial expressions
- To recognize the identities of expression images

$$\max_{D} \mathcal{L}_{\mathcal{D}}(D,G) = E_{x_{s},y_{s} \sim p_{s}(x_{s},y_{s})} [\log(D_{y_{s}^{e}}^{e}(x_{s})) + \log(D_{y_{t}^{i}}^{i}(x_{t}))] + \\ x_{t},y_{t} \sim p_{t}(x_{t},y_{t}) \\ E_{x_{s},y_{s} \sim p_{s}(x_{s},y_{s})} [\log(D_{N^{e}+1}^{e}(G(x_{s},x_{t})))] \\ x_{t},y_{t} \sim p_{t}(x_{t},y_{t})$$

Generator: The goal of G is to:

- Disentangle expression features from the source image
- Extract identity features from the target image
- Synthesize an expression image to fool D to classify it to the expression of the source image and the identity of the target image

$$\max_{G} \mathcal{L}_{\mathcal{G}}(D,G) = E_{x_s,y_s \sim p_s(x_s,y_s)} [\log(D_{y_s^e}^e(G(x_s,x_t)) + \log(D_{y_t^i}^i(G(x_s,x_t)))]$$

Adversarial Expression Consistency Loss

Encoder G_{es}: The goal of **G**_{es} is to:

- Learn an identity-invariant expression embedding
- A discriminator $\rm D_{es}$ is trained on top of expression embedding

$$\min_{G_{es}} \max_{D_{es}} \mathcal{L}_{D_{es}} = E_{x_s \sim p_d(x_s)} \mathcal{L}(1, D_{es}(G_{es}(x_s))) + E_{\bar{x} \sim p_{\bar{x}}(\bar{x})} \mathcal{L}(2, D_{es}(G_{es}(\bar{x})))$$

The total TER-GAN loss is given by:

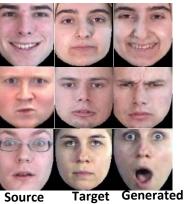
$$\min_{G_{es},G_{et}} \max_{D_{et}} \mathcal{L}_{TER-GAN} = \lambda_1 \mathcal{L}_{adv} + \lambda_2 \mathcal{L}_{D_{et}} + \lambda_3 \mathcal{L}_{D_{es}} + \lambda_4 \mathcal{L}_{pixel}$$

BU-3DFE

Source Target Generated Image Image Image

30

Image


Target Generated Image Image

OC

Source Target Generated Image Image Image

Iarget Generate Image Image

Image Image

10

CK+

Method	Setting	Accuracy
STM-Explet	Dynamic	94.19
STCAM	Dynamic	99.08
IACNN	Static	95.37
DeRL	Static	97.30
CNN(baseline)	Static	91.64
TER-GAN without L _{Des}	Static	94.93
TER-GAN(Ours)	Static	98.47

Oulu-CASIA

Method	Setting	Accuracy
STM-Explet STCAM	Dynamic Dynamic	74.59 91.25
PPDN	Static	84.59
DeRL	Static	88.0
CNN(baseline) TER-GAN without L _{Des}	Static Static	73.14 82.74
TER-GAN(Ours)	Static	89.14

BU-3DFE

Method	Setting	Accuracy
Berretti et al.[1]	3D	77.54
Yang et al.[2]	3D	84.80
Lo et al.[3]	2D+3D	86.32
DeRL	Static	84.17
CNN(baseline)	Static	75.63
TER-GAN without L _{Des}	Static	81.25
TER-GAN(Ours)	Static	84.83

MMI

Method	Setting	Accuracy
STM-Explet	Dynamic	75.12
STCAM	Dynamic	82.21
IACNN	Static	71.55
DeRL	Static	73.23
CNN(baseline)	Static	60.37
TER-GAN without L _{Des}	Static	67.81
TER-GAN(Ours)	Static	74.69

Cross dataset validation

Method	Setting	Accuracy
CNN(baseline)	Static	75.63
TER-GAN(Ours)	Static	73.97
train on BU-4DFE, test on BU-3DFE		

References

- [1]. S. Berretti, A. Del Bimbo, P. Pala, B. B. Amor, and M. Daoudi, "A set of selected sift features for 3d facial expression recognition," in 2010 20th International Conference on Pattern Recognition. IEEE, 2010, pp. 4125–4128.
- [2]. X. Yang, D. Huang, Y. Wang, and L. Chen, "Automatic 3d facial expression recognition using geometric scattering representation," in 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 1. IEEE, 2015, pp. 1–6.
- [3]. H. Li, H. Ding, D. Huang, Y. Wang, X. Zhao, J.-M. Morvan, and L. Chen, "An efficient multimodal 2d+ 3d feature-based approach to automatic facial expression recognition," Computer Vision and Image Understanding, vol. 140, pp. 83–92, 2015.

Thank You!

Questions?

