### **ITERATIVE LABEL IMPROVEMENT:** ROBUST TRAINING BY CONFIDENCE BASED FILTERING & DATASET PARTITIONING

### **INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION**

**CHRISTIAN HAASE-SCHUETZ**<sup>1,2</sup>, **RAINER STAL**<sup>1</sup>, **HEINZ HERTLEIN**<sup>1</sup>, **BERNHARD SICK**<sup>2</sup> <sup>1</sup>ENGINEERING COGNITIVE SYSTEMS, CHASSIS SYSTEMS CONTROL, ROBERT BOSCH GMBH, GERMANY <sup>2</sup> INTELLIGENT EMBEDDED SYSTEMS GROUP, UNIVERSITY OF KASSEL, GERMANY



### "Labelling quality influences detection performance"



**BOSCH** 

## "By manually adding noise to well known datasets, we study the effect of erroneous labels and propose a technique to mitigate them"





KASSEL

Chassis Systems Control | Christian Haase-Schütz | 2021-01-13 © Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights **BOSCH** 

## Three networks used MNIST-CNN, CIFAR-CNN, ResNet32/50





Chassis Systems Control | Christian Haase-Schütz | 2021-01-13

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

KASSEL

N

Ε



### The Idea: Iterative Label Improvement – ILI



### Some Results



ILI with MNIST-CNN on noisy MNIST data with random error



ILI with ResNet32 on noisy CIFAR10 data with random error, vs. "learning to reweight"

E

KASSEL

BOSCH

Chassis Systems Control | Christian Haase-Schütz | 2021-01-13

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

0



# BACKUP

BOSCH

### Different versions of ILI introduced

### Algorithm 2 opILI with initILI

Input: 
$$X_{\text{train, A}}$$
,  $y_{\text{train, Niter}}$   
Output: Model  $m^{n_{\text{iter}}}$ ,  $y_{\text{train}}^{n_{\text{iter}}}$   
1:  $X_{\text{train, A}}$ ,  $X_{\text{train, B}} = \text{Split}(X_{\text{train}})$   
2:  $m_{A}^{(0)}$ .initialize()  
3:  $m_{A}^{(0)}$ .fit( $X_{\text{train, A}}$ ,  $y_{\text{train, A}}^{(0)}$ )  
4: for  $i = 1$  to  $n_{\text{iter}}$  do  
5:  $y_{\text{train, B}}^{(i)} = m_{A}^{(i-1)}(X_{\text{train, B}})$   
6:  $m_{B}^{(i)}$ .initialize()  
7:  $m_{B}^{(i)}$ .fit( $X_{\text{train, B}}$ ,  $y_{\text{train, B}}^{(i)}$ )  
8:  $y_{\text{train, A}}^{(i)} = m_{B}^{(i)}(X_{\text{train, A}})$   
9:  $m_{A}^{(i)}$ .initialize()  
10:  $m_{A}^{(i)}$ .fit( $X_{\text{train, A}}$ ,  $y_{\text{train, A}}^{(i)}$ )  
11: end for  $\Upsilon$   
12:  $y_{\text{train}}^{n_{\text{iter}}} = \begin{bmatrix} y_{\text{train, A}}^{(n_{\text{iter}})}, y_{\text{train, B}}^{(n_{\text{iter}})} \end{bmatrix}$ 

O Chassis Systems Control | Christian Haase-Schütz | 2021-01-13

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

BOSCH

UN

Ε

KASSEL

### Results – different models & datasets



(a) CIFAR-CNN on noisy (b) MNIST-CNN on noisy (c) CIFAR-CNN on noisy (d) MNIST-CNN on noisy MNIST data with random error. MNIST data with random error. MNIST data with bias error.

10 Chassis Systems Control | Christian Haase-Schütz | 2021-01-13

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

**BOSCH** 

KASSEL

F

Ά Τ

# The effect of data augmentation



*Figure 5.* Comparison of different versions of our ILI algorithm on CIFAR10 data, using a ResNet32, with erroneous labels (randomly distributed). As a reference we compare to "learning to reweight" (Ren et al., 2018). Without data augmentation both methods fail to improve the accuracy significantly.



*Figure 6.* Comparison of different versions of our ILI algorithm on CIFAR10 data, using a ResNet32, with erroneous labels (randomly distributed) vs. "learning to reweight". With data augmentation our method outperforms "learning to reweight" for most noise fractions.

E

KASSEL

BOSCH

#### 11 Chassis Systems Control | Christian Haase-Schütz | 2021-01-13

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

### ResNet32, Noise fraction 0.1



**BOSCH** 

Chassis Systems Control | Christian Haase-Schütz | 2021-01-13 12

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights