

A Discriminant Information Approach to Deep Neural Network Pruning

Zejiang Hou and Sun-Yuan Kung

Department of electrical engineering, Princeton University

{zejiangh, kung}@princeton.edu

1

Overview

DNN acceleration

- Motivation for feature-map pruning
- Taxonomy & challenges

Proposed Discriminant Information Feature-map pruning

- Quantifying feature-maps discriminant power
- Differential discriminant for channel pruning
- Intra-layer mixed precision quantization
- Performance evaluation and inference speedups

Summary

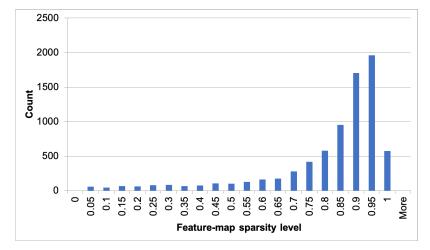
Feature-map Pruning: One of Many Efficient DNN Methods

Optimization goals for network inference

- Reduce network model size
- \circ Speedup network execution time
- Maintain model accuracy

Observation that inspires feature-map pruning

- Biology: not all neurons are activated to solve a task
- Neural network:
 - Trained model has many redundant feature-maps, pruning which causes little degradation
 - Feature-maps can have (nearly) all 0s due to ReLU



Most of feature-maps have (nearly) all 0s (ResNet50 on ImageNet)

Taxonomy & Challenges

- Core of feature-map pruning determine which feature-maps to prune based on a importance characterization metric
- Existing pruning methods
 - Importance metric based on filter weights information, e.g. filter norm, filter geometric median
 - Current discriminant feature-map pruning requires auxiliary cross-entropy losses for measuring and selecting feature-maps – retraining step is heavy in both computation time and human labor.
- Many importance metric performs no better than random selection

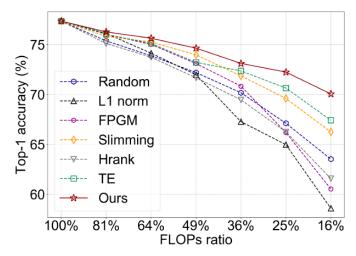


Fig. 1. Comparison of channel selection criteria in terms of testing accuracy. We prune VGG16 on CUB-200 with different FLOPs reductions.

Proposed Feature-map Pruning Method

- Quantifying feature-map discriminant power
 - Multi-class discriminant analysis $\max_{\mathbf{F}:\mathbf{F}^T(\bar{\mathbf{K}}^l+\rho\mathbf{I})\mathbf{F}=\mathbf{I}} \operatorname{tr}(\mathbf{F}^T\mathbf{K}_B^l\mathbf{F}) \quad \blacksquare \quad DI = \operatorname{tr}((\bar{\mathbf{K}}^l+\rho\mathbf{I})^{-1}\mathbf{K}_B^l)$
 - Relation to predictor learning $MRLSE = -\operatorname{tr}((\bar{\mathbf{K}}^l + \rho \mathbf{I})^{-1}\mathbf{K}_B^l) + \|\mathbf{Y}\mathbf{C}\|_F^2 = -DI + \|\mathbf{Y}\mathbf{C}\|_F^2$
- Differential discriminant for feature-map pruning
 - Given a desired channel sparsity κ^l , we aim to find $\kappa^l C^l$ channels that maximally preserve the discriminant power
 - Channel importance by measuring influence on the DI value, i.e. the difference of DI value when $m_i^l = 1$ (channel *j* is present) and $m_i^l = 0$ (channel *j* is pruned)

$$\phi_j^l = \operatorname{tr}\{[\operatorname{diag}(\mathbf{1})\bar{\mathbf{K}}^l \operatorname{diag}(\mathbf{1}) + \rho \mathbf{I}]^{-1} \operatorname{diag}(\mathbf{1})\mathbf{K}_B^l \operatorname{diag}(\mathbf{1})\} - (5)$$

$$\operatorname{tr}\{[\operatorname{diag}(\mathbf{1} - \mathbf{e}_j)\bar{\mathbf{K}}^l \operatorname{diag}(\mathbf{1} - \mathbf{e}_j) + \rho \mathbf{I}]^{-1} \operatorname{diag}(\mathbf{1} - \mathbf{e}_j)\mathbf{K}_B^l \operatorname{diag}(\mathbf{1} - \mathbf{e}_j)\}$$

• By relaxing the binary constraint on the indicator vector \mathbf{m}^l , ϕ_j^l can be approximated by the derivative of DI with respect to m_i^l (*differential discriminant*)

$$\begin{split} \phi_j^l &\approx \frac{\partial \operatorname{tr}\{[\operatorname{diag}(\mathbf{m}^l)\bar{\mathbf{K}}^l \operatorname{diag}(\mathbf{m}^l) + \rho \mathbf{I}]^{-1} \operatorname{diag}(\mathbf{m}^l) \mathbf{K}_B^l \operatorname{diag}(\mathbf{m}^l)\}}{\partial m_j^l} \bigg|_{\substack{\mathbf{m}^l = \mathbf{1} \\ (6)}} \\ &= 2\rho([\bar{\mathbf{K}}^l]^{-1} \mathbf{K}_B^l [\bar{\mathbf{K}}^l]^{-1})_{jj} \end{split}$$

Performance Evaluation

Pruning ResNet-18/50 and MobileNetV2 on ImageNet

TABLE IIIPRUNING RESULTS ON IMAGENET. "ΔTOP-1": TOP-1 ACCURACY DIFFERENCE DUE TO PRUNING, CALCULATED AS pruned top-1 — pre-trained top-1."FLOPs": FLOPs(pruning ratio). "Params.": parameters(pruning ratio). "-": results not reported by corresponding method.

	,				
Model	Method	Top-1 (%)	Δ Top-1 (%)	FLOPs	Params.
	TAS [49]	$70.65 \rightarrow 69.15$	-1.50	1.21E9 (33.3%)	-
ResNet18	FPGM [12]	$70.28 \rightarrow 68.41$	-1.87	1.05E9 (41.8%)	-
	DI-greedy (Ours)	69.76 ightarrow 68.91	-0.85	1.04E9 (42.5%)	7.82E6 (33.1%)
	Sampling [42]	$69.76 \rightarrow 67.38$	-2.38	1.28E9 (29.3%)	6.57E6 (43.8%)
	DCP [10]	$69.76 \rightarrow 67.35$	-2.41	0.98E9 (46.1%)	6.19E6 (47.1%)
	DI-unif (Ours)	69.76 ightarrow 68.15	-1.61	0.98E9 (46.1%)	6.19E9 (47.1%)
	SSS-32 [22]	$76.10 \rightarrow 74.18$	-1.92	2.82E9 (31.1%)	18.60E9 (27.3%)
	Taylor-81 [19]	$76.18 \rightarrow 75.48$	-0.70	2.66E9 (34.9%)	17.90E6 (30.1%)
	SFP [14]	$76.15 \rightarrow 74.61$	-1.54	2.38E9 (41.8%)	-
	FPGM-30 [12]	$76.15 \rightarrow 75.59$	-0.56	2.36E9 (42.2%)	-
	GAL-0.5 [23]	$76.15 \rightarrow 71.95$	-4.20	2.33E9 (43.1%)	21.20E6(17.2%)
	LeGR [13]	$76.10 \rightarrow 75.70$	-0.40	2.37E9 (42.0%)	-
	DI-SD (Ours)	76.10 ightarrow 76.10	0	2.31E9 (43.5%)	16.70E6 (34.8%)
ResNet50	Sampling [42]	$76.13 \rightarrow 75.21$	-0.92	2.86E9 (30.1%)	14.33E6 (44.0%)
	Hrank [11]	$76.15 \rightarrow 74.98$	-1.17	2.30E9 (43.8%)	16.15E6 (36.9%)
	Taylor-72 [19]	$76.18 \rightarrow 74.50$	-1.68	2.25E9 (45.0%)	14.20E6 (44.5%)
	FPGM-40 [12]	$76.15 \rightarrow 74.83$	-1.32	1.90E9 (53.5%)	-
	C-SGD-50 [50]	$75.34 \rightarrow 74.54$	-0.80	1.82E9 (55.8%)	-
	ThiNet-50 [27]	$72.88 \rightarrow 71.01$	-1.87	1.82E9 (55.8%)	12.40E6(51.6%)
	DCP [10]	$76.10 \rightarrow 74.95$	-1.15	1.82E9(55.8%)	12.40M (51.6%)
	DI-unif (Ours)	76.10 ightarrow 75.50	-0.60	1.77E9 (56.7%)	12.10E6 (52.7%)
	DCP [10]	$70.11\% \rightarrow 64.22\%$	-5.89%	1.65E8 (45%)	2.57E6 (25.9%)
MobileNetV2	CPLI [29]	$72.19\% \rightarrow 67.35\%$	-4.84%	1.65E8 (45%)	2.57E6 (25.9%)
	DI-unif (Ours)	$71.80\% \rightarrow 69.33\%$	-2.47%	1.50E8 (50%)	1.92E6 (44.7%)

Performance Evaluation (Cont.)

• Quantization results of compression ResNet50 on ImageNet

TABLE IV						
COMPARISON OF DIFFERENT QUANTIZATION METHODS FOR COMPRESSING						
RESNET50 ON IMAGENET.						
	Method	Precision	Model Size	Top-1	Top-5	
	ResNet50	float 32-bit	97.49 MB	76.10%	92.93%	
	DC [52]	final 2 hit	6 22 MD	60 8501	00 6001	

ResNet50	float 32-bit	97.49 MB	76.10%	92.93%
DC [52]	fixed 2-bit	6.32 MB	69.85%	88.68%
FSNet-WQ [53]	fixed 8-bit	$\approx 8.37 \text{ MB}$	69.87%	89.61%
HAQ [4]	inter-layer mixed	6.30 MB	70.63%	89.93%
Ours	intra-layer mixed	6.09 MB	73.21%	91.27%

• Practical latency speedup

Table 11: Actual inference time speedup of pruned models on ImageNet. We measure on PyTorch platform with single NVIDIA P100 GPU using batch-size 64.

Model	Method	Top-1	Runtime	Latency↓
ResNet18	Baseline	69.76%	14.41ms	-
Residento	DI-unif	68.15%	10.52ms	27%
ResNet50	Baseline	76.10%	49.97ms	-
Residence	DI-unif	75.50%	30.98ms	38%
MobileNetV2	Baseline	71.80%	30.50ms	-
widdheinet v Z	DI-unif	69.33%	16.86ms	45%

Summary

- A feature-map discriminant perspective for feature-map pruning in deep neural networks
- Theoretical guidelines to effectively quantify the feature-map discriminant power
- An intra-layer mixed precision quantization scheme to further compress the network based on the same metric
- DI-based greedy pruning algorithm to automatically decides the target pruned architecture
- Experiments on various CNN architectures and benchmarks validates the effectiveness of our method