

*P*² Net: Augmented Parallel-Pyramid Net for Attention Guided Pose Estimation

Ran He

ran.he@ia.ac.cn

Luanxuan Hou

luanxuan.hou@cripac.ia.ac.cn

Launched Applications

Our Contributions

Launched Applications

Our Contributions

Definition of Pose Estimation

 Articulated body Pose Estimation in computer vision is the study of algorithms and systems that recover the pose of an articulated body

Application

- ✓ Assisted living
- ✓ Character animation
- Intelligent driver assisting system
 - Car accidents account for about
 2% of deaths globally each year
 - Pedestrian detection
 - Distracted driving detection

Photograph taken from Pexels

Challenge on Application

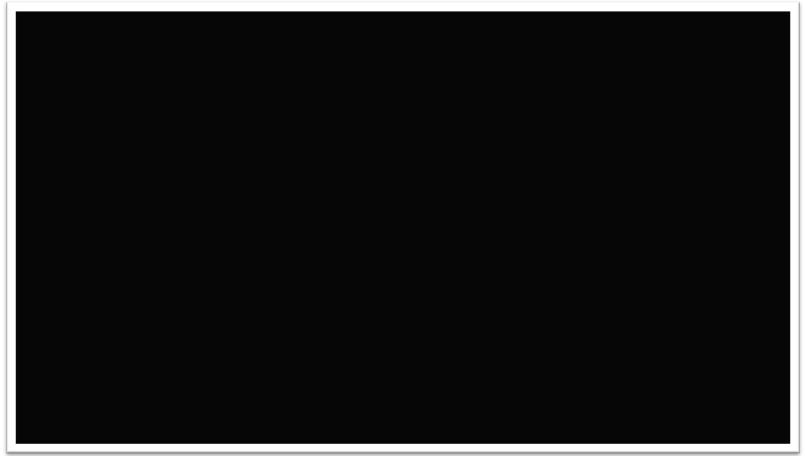
- Change of perspective / clothes •
- Multi-Person blocking each other •

- Change in morning / evening light •
- **Complexity of Model**

Data source from: Didi AI Labs

Launched Applications

Overview of Contributions



- ✓ Data augmentation sequence for Spontaneous Learning
- ✓ Refining based on Attention Module
 - High-resolution information compensation based on parallel structures

Data source from: MSCOCO test-dev

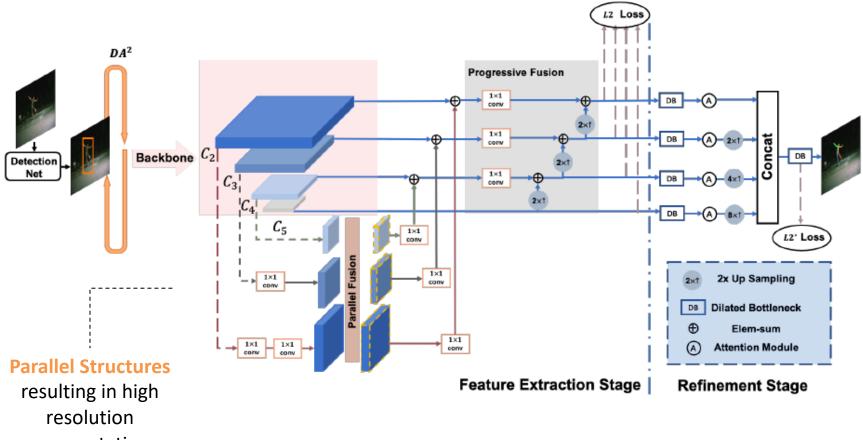
Overview of Contributions Demo

Launched Applications Conflict detection (Night)

Data source from: Didi AI Labs

Launched Applications Distracted driving detection

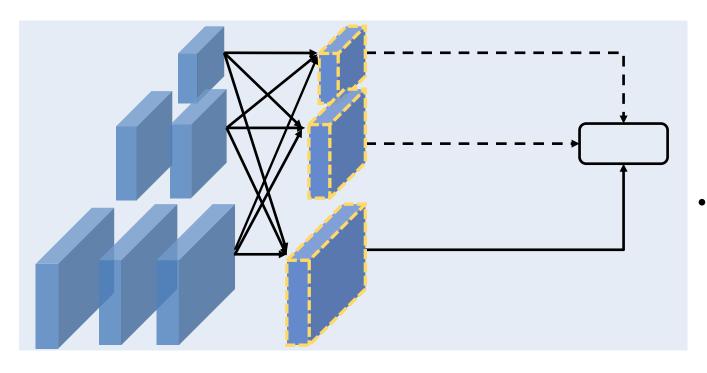
Data source from: Didi AI Labs



Launched Applications

Our Contributions

Spontaneous FPN



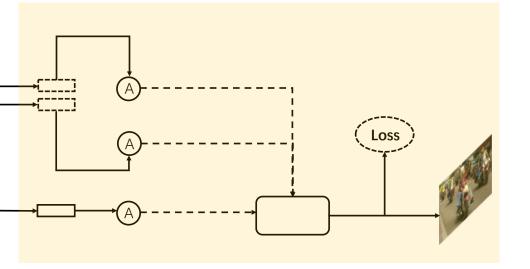
representations

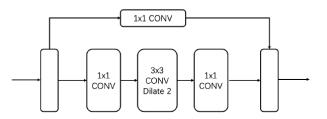
Spontaneous FPN

Parallel Structure

• **Pyramid structure** effectively retaining the *global and local* information.

> Making Up Information loss

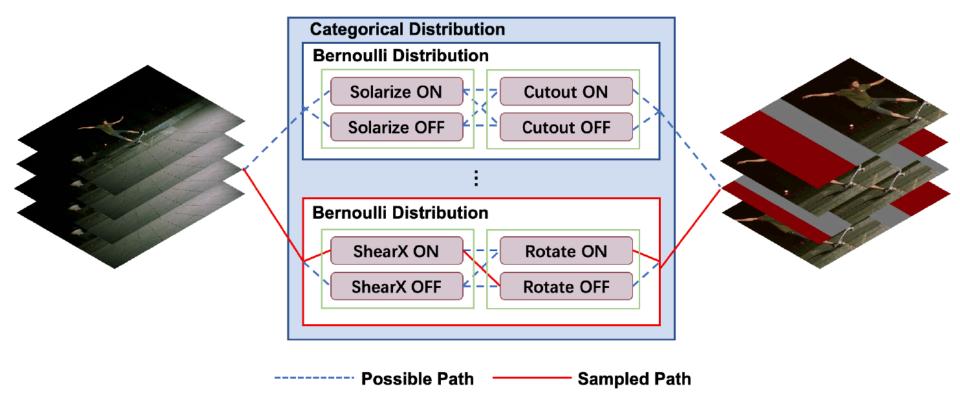

Perform *multiscale* fusions, using **parallel structures**, resulting in high resolution representations.



Spontaneous FPN

• RefineNet

CRIPA



- RefineNet adopt *L2*loss* only keep the top α key points *loss* out of all N key points $\int_{\sigma(\cdot)}^{\sigma(\cdot)} \underset{\otimes}{\operatorname{Sigmoid Function}}^{\operatorname{GAP: Element-wise add}}_{\sigma(\cdot)} \underset{\otimes}{\operatorname{Sigmoid Function}}_{\operatorname{Outer Product}}$
- Using Dilated Conv to achieve a good trade-off between Receptive Field and efficiency

Spontaneous Data Augmentation

Spontaneous FPN

• Spontaneous Data Augmentation

Operations

Operation Name	Description
TranslateX(Y)	Translate the image and the bounding boxes in the horizontal (vertical) direction by
	magnitude number of pixels.
Rotate	Rotate the image and the bounding boxes magnitude degrees.
Equalize	Equalize the image histogram.
Solarize	Invert all pixels above a threshold value of magnitude.
SolarizeAdd	For each pixel in the image that is less than 128, add an additional amount to it decided
	by the magnitude.
Brightness	Adjust the brightness of the image. A <i>magnitude</i> =0 gives a black image, whereas <i>magnitude</i> =1 gives the original image.
Sharpness	Adjust the sharpness of the image. A <i>magnitude</i> =0 gives a blurred image, whereas
	magnitude=1 gives the original image.
Cutout	Set a random square patch of side-length magnitude pixels to gray.
Scale	Scale with this magnitude.

Table 1: Table of all the possible transformations that can be applied to an image. These are the transformations that are available to the controller during the search process. The range of magnitudes that the controller can predict for each of the transforms is listed in the third column. Some transformations do not have a magnitude associated with them (e.g. Equalize).

Our Contributions Spontaneous FPN

Spontaneous Data Augmentation

(Rotate,P,M)

(TranslateX,P,M)

(Brightness, P, M)

Spontaneous FPN

Experiments and Analysis (MSCOCO)

Method	Backbone	Input size	#Params	GFLOPs	AP	AP^{50}	AP^{75}	AP^M	AP^L	AR
Mask-RCNN[10]	ResNet-50-FPN	-	-	-	63.1	87.3	68.7	57.8	71.4	-
G-RMI[27]	ResNet-101	353×257	42.6M	57.0	64.9	85.5	71.3	62.3	70.0	69.7
G-RMI[27] + extra data	ResNet-101	353×257	42.6M	57.0	68.5	87.1	75.5	65.8	73.3	73.3
CPN[4]	ResNet-Inception	384×288	-	-	72.1	91.4	80.0	68.7	77.2	78.5
RMPE[9]	PyraNet	320×256	28.1M	26.7	72.3	89.2	79.1	68.0	78.6	-
CFN[14]	-	-	-	-	72.6	86.1	69.7	78.3	64.1	-
CPN[4] (ensemble)	ResNet-Inception	384×288	-	-	73.0	91.7	80.9	69.5	78.1	79.0
SimpleBaseline[37]	ResNet-152	384×288	68.6M	35.6	73.7	91.9	81.1	70.3	80.0	79.0
HRNet-W32[33]	HRNet-W32	384×288	28.5M	16.0	74.9	92.5	82.8	71.3	80.9	80.1
Ours	ResNet101	384×288	42.5M	26.3	77.3	93.1	84.7	73.6	83.4	82.3

Spontaneous FPN

Experiments and Analysis (MPII)

Method	Hea	Sho	Elb	Wri	Hip	Kne	Ank	Total
Stack Hourglass [25].	98.2	96.3	91.2	87.1	90.1	87.4	83.6	90.9
Sun et al [32].	98.1	96.2	91.2	87.2	89.8	87.4	84.1	91.0
Chu et al [6].	98.5	96.3	91.9	88.1	90.6	88.0	85.0	91.5
Chou et al [5].	98.2	96.8	92.2	88.0	91.3	89.1	84.9	91.8
Yang et al [38].	98.5	96.7	92.5	88.7	91.1	88.6	86.0	92.0
Ke et al[16].	98.5	96.8	92.7	88.4	90.6	89.3	86.3	92.1
Tang et al [35].	98.4	96.9	92.6	88.7	91.8	89.4	86.2	92.3
SimpleBaseline[37]	98.8	96.6	91.9	87.6	91.1	88.1	84.1	91.5
HRNet-W32[33]	98.6	96.9	92.8	89.0	91.5	89.0	85.7	92.3
Ours	98.8	97.0	93.9	89.9	92.1	92.0	86.4	92.9

Spontaneous FPN

Ablation study

> Detector Net

Detector	Backbone	mAP	AP^{50}	AP^S	AP^M	AP^{L}	AP^*	
Faster R-CNN	ResNet50	37.4	59.0	18.3	41.7	52.9	77.2	
DetNet59	ResNet50	40.2	61.7	23.9	43.2	52.0	77.3	
TridentNet	ResNet101	40.6	61.8	23.0	45.5	55.9	77.3	
Table 5. Comparing with different detector networks. AP^* means								

the performance of P^2 Net based on the specific detector network.

Spontaneous Data Augmentation

	Backbone	1					1
	ResNet101						
$Ours^*$	ResNet101	75.8	91.7	83.1	72.2	81.5	82.2

Table 6. Comparing with the result without searching. $Ours^*$ means the method without searching, adopting the traditional data augmentations.

Attention Module

	Backbone						
	ResNet101						1
$Ours^*$	ResNet101	76.2	92.5	83.1	72.2	82.2	81.4

Table 7. Compared with the result without Attention Module. $Ours^*$ means the method without Attention Module, adopting the auto data augmentations.

THANK YOU