25th International Conference on Pattern Recognition

Operation and Topology Aware Differentiable Architecture Search

Shahid Siddiqui^{1,2}, Christos Kyrkou¹ and Theocharis Theocharides^{1,2}

KIOS Research and Innovation Center of Excellence
University of Cyprus

University of Cyprus Imperial College London

Funded by:

Introduction

- Convolutional neural networks (CNNs) are well adopted for computer vision tasks.
- Since AlexNet, the complexity of CNNs is ever increasing i.e. deep ResNet.
- Manual network design demands substantial engineering effort.
- NAS has emerged as a task of automating the network design process.
- Idea: Given any dataset, find the best network.

Differentiable Architecture Search

- DARTS models search task as differentiable.
- Uses bilevel optimisation with gradient descent.
- P-DARTS suggests to search progressively.
- 'NAS Evaluation is Frustratingly Hard' also studies DARTS' search space.

Issues

- Progressive searching matters?
- Is it the expertly crafted search space?
- Cell structure is complex.
- Which factor helps discover better results?
- Limited understanding.

Kôľoc

Contributions

- We investigate which components influence resulting cells the most:
 - Search network depth
 - Operation type
 - Cell configurations
- We alleviate skip connection bias problem.
- We significantly speed up search.

Effect of search depth and operation type

Search Space	Operations				
SS1	sep-3x3, dil-3x3				
SS2	sep-5x5, dil-5x5				
SS3	sep-3x3, sep-5x5				
SS4	dil-3x3, dil-5x5				
SS5	sep-3x3, dil-5x5				
SS6	sep-5x5, dil-3x3				
SS7	sep-3x3, sep-5x5, dil-3x3				
SS8	sep-3x3, sep-5x5, dil-5x5				

We split the search spaces such that searching within each is possible for deeper networks without running into memory limitations.

Each search space also has skip connection and pooling operations.

Effect of search depth and operation type

5 16

Searching deeper is only marginally better computationally costly.

Separable convolution operations yield best cells while dilated convolutions tend to deteriorate it.

Effect of cell topology

180 cell configurations are evaluated without changing operation type.

Cell topology has substantial effect on final accuracy, hence we can search only along good cells.

Kôĩoç

Unbiased and fast search

Method Skip Connections		Skip rections	Shallow Network Accuracy	Parameters (M)	Search Cost (GPU Hours)
	Normal	Reduction			
DARTS	14	19	90.25	0.11	36
DARTS + Data Subset	4	14	91.27	0.15	6
DARTS + Epoch Update	5	11	91.33	0.16	4.6
DARTS + Data Subset + Epoch Update	5	8	92.15	0.2	0.85

Searching with a subset of target dataset reduces the skip connection bias yet speeds up the search significantly.

Using "sparse-update" through out the search is also effective at reducing the skip connection aggregation problem.

DARTS search supernet with equal attention to all operations at each edge.

eDARTS has a fixed search path with more attention to important operations.

www.kios.ucy.ac.cy

Kôľog

Comparison with state-of-the-art

Architecture	Test Err. (%)		Params	Search Cost	Search Method
	C10	C100	(M)	(GPU-days)	~~~~~
DenseNet-BC [24]	3.46	17.18	25.6	-	manual
NASNet-A + cutout [7]	2.65	-	3.3	1800	RL
AmoebaNet-A + cutout [8]	3.34	-	3.2	3150	evolution
AmoebaNet-B + cutout [8]	2.55	-	2.8	3150	evolution
Hierarchical evolution [9]	3.75	-	15.7	300	evolution
PNAS [37]	3.41	-	3.2	225	SMBO
ENAS + cutout [27]	2.89	-	4.6	0.5	RL
DARTS (first order) + cutout [10]	3.00	17.76†	3.3	1.5	gradient-based
DARTS (second order) + cutout [10]	2.76	17.54†	3.3	4	gradient-based
SNAS + mild constraint + cutout [38]	2.98	-	2.9	1.5	gradient-based
SNAS + moderate constraint + cutout [38]	2.85	-	2.8	1.5	gradient-based
SNAS + aggressive constraint + cutout [38]	3.10	-	2.3	1.5	gradient-based
ProxylessNAS + cutout [39]	2.08	-	5.7	4	gradient-based
PC-DARTS + cutout [12]	2.57	-	3.6	0.1	gradient-based
Fair DARTS [28]	2.54	-	2.8	0.3	gradient-based
P-DARTS CIFAR10 + cutout [11]	2.50	16.55	3.4	0.3	gradient-based
P-DARTS CIFAR100 + cutout [11]	2.62	15.92	3.6	0.3	gradient-based
eDARTS CIFAR10 + cutout	2.53	17.00	3.1	0.015 ‡	gradient-based
eDARTS CIFAR100 + cutout	2.72	16.83	3.5	0.016	gradient-based

eDARTS is 6x faster than PC-DARTS while achieving almost same error rate.

Conclusion

- Good architectures can be discovered regardless of the search network depth.
- Separable convolution is the most effective operation in DARTS' search space.
- 3x3 kernel size yields better cells.
- Cell configuration also affects accuracy.
- eDARTS alleviates skip connection problem of DARTS.
- Search cost is less than 30 minutes.
 - Design a new search space and improve search by feedback.

K (O

Thank you :)

www.kios.ucy.ac.cy