Approach for Document Detection by Contours and Contrasts

Daniil Tropin^{1,2}, Sergey Ilyuhin^{1,2}, Dmitry Nikolaev^{1,4}, Vladimir V. Arlazarov^{1,3}

¹ Smart Engines Service LLC

² Moscow Institute of Physics and Technology (NRU)

³ Federal Research Center "Computer Science and Control" RAS

⁴ Institute for Information Transmission Problems (Kharkevich Institute) RAS

Goal: document detection problem

Input: Image

Output: Quadrilateral corresponding to the document location

- There is only one document in the image;
- All document borders are visible;
- Document has an unknown internal structure;
- Complex background is possible;
- Priori information about camera intrinsic parameters is NOT available.

Image from MIDV-500 dataset

Example of an image with highlighted quadrilateral of the document border Contour-based approach

Input image

Confidence

Region-based approach

The ranking problem statement

Input:

- Image I
- Set of quadrilaterals $\{q\}_{i=0}^N$
- Ground truth quadrilateral *m*

It is required to define a function F such that

 $\left\{egin{argamatrix} i^* = argmax_{i=0}^N F(q_i,I)\ L(q_{i^*},m) = 1 \end{array}
ight.,$

where L is a binary quality metric.

Proposed function

Image I and quadrilateral q

Contour score is based on integral statistics of edge map along borders of *q*

$$F(q,I) = R(q,I) + kC(q,I)$$

Region score is based on χ^2 distance between sets of pixels in *A* and *B*

image $(q \rightarrow t)$

External region *A*, internal region *B*

Highlighted edges along lines forming q 5

(A) Horizontal and vertical edges and lines (B) Quad formationby 2 vertical and 2horizontal lines

Error classification on MIDV-500 dataset Target class of errors , 15 000 images 50 ID cards 10 backgrounds

Target class of errors \downarrow

			•		
	(i) Out of	(ii) No	(iii) Ranking	Total	Run-time
	frame	line	error	errors	(ms/frame)
Proposed algo. (N=1)	2850	660	854	4366	82
Proposed algo. (N=11)	2803	627	509	3941	88

Improvement value	+47	+33	+345	+425	-6	
Improvement ratio	+1.65%	+5.00%	+40.40%	+9.73%	/ -7.3%	,

/~ top 1 quad by Contour score only Jaccard Index < 0.945 iPhone 6 in single

thread mode

Improvement examples of Ranking error

Red quadrilateral corresponds to the top **contour** alternative **Blue** – to the top alternative by **contour and region score**

Figures from left to right (1), (2), (3), (4)

Comparison with state-of-the-art

Competitive result on SmartDoc

System	MIDV-500			SmartDoc					
	4 vertices in	At least 3 in	Full	Bgr 1	Bgr 2	Bgr 3	Bgr 4	Bgr 5	Full
Proposed algo. (N=1)	0.968	0.955	0.861	0.98	0.974	0.982	0.966	0.294	0.906
Proposed algo. (N=11)	0.972	0.961	0.87	0.983	0.974	0.983	0.97	0.319	0.91
CS-NUST-2	0.739	0.705	0.626	0.988	0.976	0.984	0.974	0.948	0.978
OctHU-PageScan	0.403	0.374	0.319						
JCD+CSR				0.988	0.984	0.983	0.984	0.961	0.982
GOP		1		0.961	0.944	0.965	0.93	0.412	0.896
LRDE-2				0.905	0.936	0.859	0.903		
LRDE-3				0.985	0.982	0.987	0.98	0.848	0.97
DBSCAN									0.942
SmartEngines	/			0.989	0.983	0.99	0.979	0.688	0.955
SmartDoc (Averaged)				0.947	0.903	0.938	0.812	0.404	0.855

Top on MIDV-500

Table 2. Mean Jaccard Index

Conclusion

- The scoring function with contour and contrast features is proposed.
- Proposed modification reduced the number of ranking errors by 40%;
- Runtime is still small even on the mobile phones;
- The highest quality on MIDV-500 dataset;
- The competitive results on 4/5 parts of SmartDoc dataset;

Future work: Geometric properties of the document and Video stream mode.

Approach for Document Detection by Contours and Contrasts

Daniil Tropin^{1,2}, Sergey Ilyuhin^{1,2}, Dmitry Nikolaev^{1,4}, Vladimir V. Arlazarov^{1,3}

daniil_tropin@smartengines.com

¹ Smart Engines Service LLC
 ² Moscow Institute of Physics and Technology (NRU)
 ³ Federal Research Center "Computer Science and Control" RAS
 ⁴ Institute for Information Transmission Problems (Kharkevich Institute) RAS

