Learning Semantic Representation via Joint 3D Face Reconstruction and Facial Attribute Estimation

Zichun Weng, Youjun Xiang, Xianfeng Li, et al.
South China University of Technology
3D Face Reconstruction

- Supervised by surrogate label
- Self-supervision

Lack of semantic meaning
In the latent space

Regression
3D supervision
Self-supervision
Surrogate label
Projection

Lin et al. CVPR 2020
→ **Motivation**

- 3D face reconstruction (3DFR)
- Facial attribute Estimation (FAE)
- Joint training
- Shared facial representation
Our Joint Framework

Advantages:
- Extracting semantic facial representations for high-fidelity reconstruction
- Multi-task learning avoids overfitting in either task
→ Semantic Representation for Input Face

• Shape and attributes deviation: changing one dimension in the feature space
• “disentanglement”
• Fine-grained shape manipulation: cheekbones / eyes
Comparison on AFLW2000 Dataset

- High-fidelity reconstruction with accurate feature extraction
- Robustness across extreme conditions
- Sharper but more reasonable shapes
→ Comparison on Florence Database

(a) CED curves

(b) Pose-specific NME

3DDFA: Zhu et al. CVPR 2016
VRN: Jackson et al. ICCV 2017
CMD: Zhou et al. CVPR 2019
PRN: Feng et al. ECCV 2018
→ Conclusion

• Joint framework:
 • Semantic representation
 • Accuracy
 • Robustness

• Future works:
 • Disentanglement in feature space
 • Training with scanned 3D data
Thank you!