

Learning Semantic Representation via Joint 3D Face Reconstruction and Facial Attribute Estimation

Zichun Weng, Youjun Xiang, Xianfeng Li, *et al.*South China University of Technology

→ 3D Face Reconstruction

- Supervised by surrogate label
- Self-supervision

→ Motivation

- 3D face reconstruction (3DFR)
- Facial attribute Estimation (FAE)
- Joint training
- Shared facial representation

→ Our Joint Framework

Advantages:

- Extracting semantic facial representations for high-fidelity reconstruction
- Multi-task learning avoids overfitting in either task

→ Semantic Representation for Input Face

- Shape and attributes deviation: changing one dimension in the feature space
- "disentanglement"
- Fine-grained shape manipulation: cheekbones / eyes

→ Comparison on AFLW2000 Dataset

- High-fidelity reconstruction with accurate feature extraction
- Robustness across extreme conditions
- Sharper but more reasonable shapes

→ Comparison on Florence Database

(a) CED curves

(b) Pose-specific NME

3DDFA: Zhu et al. CVPR 2016 VRN: Jackson et al. ICCV 2017 CMD: Zhou et al. CVPR 2019 PRN: Feng et al. ECCV 2018

→ Conclusion

Joint framework:

- Semantic representation
- Accuracy
- Robustness

Future works:

- Disentanglement in feature space
- Training with scanned 3D data

Thank you!