

25th International Conference on Pattern Recognition 10 - 15 January, 2021

PA-FlowNet : Pose-Auxiliary Optical Flow Network for Spacecraft Relative Pose Estimation

Zhi-Yu Chen, Po-Heng Chen, Kuan-Wen Chen, Chen-Yu Chan

National Chiao Tung University & National Space Organization

Pre-recorded : 10 December, 2026

Introduction Backgrounds

- GPS (Global Positioning System) is often used in the global environment.
- It is *challenging* to deploy enough satellites on other planets.
- Use *computer vision technique* !

Introduction Objectives

- Goal : To find the appropriate method of computer vision for space localization.
- *Complicated foreground* will not appear in space.
- Use *optical flow approach* !

[1] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. van der Smagt, D. Cremers, and T. Brox. "FlowNet: Learning optical flow with convolutional networks," in Proc. ICCV, 2015.

[2] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox. "FlowNet 2.0: Evolution of optical flow estimation with deep networks," in Proc. CVPR, 2017.

[3] D. Sun, X. Yang, M.Y. Liu, and J. Kautz.

"PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume," in Proc. CVPR, 2018.

Basic model for PA-FlowNet FlowNet2 vs PWC-Net

FlowNet2 < *PWC-Net*

Moon Datasets

MPI Sintel Dataset

FlowNet2 > *PWC-Net*

FlowNet2 on Moon Data

- Huge performance gap while the height is *larger than 3000 kilometers*.
- **Reason** : the poor flow estimation of the backgrounds.
- Solution : Use Curriculum Learning !

Target

Source

Estimated Flow

Proposed PA-FlowNet Network Architecture

CONTRACTOR S

Proposed PA-FlowNet

Foreground-attention Approach

- $f'_{(c,i,j)} = f_{(c,i,j)} + \tau(t) [M_{(i,j)} \cdot f_{(c,i,j)}]$
- $f_{(c,i,j)}$: Estimated Flow
- $f'_{(c,i,j)}$: Foreground-attention Flow.
- $M_{(i,j)} : Mask$ $M_{(i,j)} = \begin{cases} 1, & if pixel_{(i,j)} belongs to the foreground. \\ 0, & if pixel_{(i,j)} belongs to the background. \end{cases}$
- $\tau : attention factor (depending on t)$ $\tau(t) = 0.5[1 + \cos(\pi t / total_epochs)]$

[4] M. M. Derakhshani, S. Masoudnia, A. H. Shaker, O. Mersa, M. A. Sadeghi, M. Rastegari, and B. N. Araabi. "Assisted excitation of activations: A learning technique to improve object detectors," in Proc. CVPR, 2019.

Proposed PA-FlowNet Training Loss

Multi-scale End-point Error Loss (for Stage 1):

$$\mathcal{L}_{M-epe} = \sum_{l=0}^{N} \alpha_{l} \sum_{x} \left\| Flow_{est}^{(l)}(x) - Flow_{gt}^{(l)}(x) \right\|_{2}; \ \alpha_{l} = 2^{l} / (2^{N} - 1), \ N = 4.$$

• Total Loss (for Stage 2, End-point Error Loss + Pose Loss) :

$$\mathcal{L}_{total} = \mathcal{L}_{epe} + \gamma \mathcal{L}_{pose}$$
; $\gamma = 10$.

$$- \mathcal{L}_{epe} = \sum_{x} \left\| Flow_{est}(x) - Flow_{gt}(x) \right\|_{2} .$$

$$- \mathcal{L}_{pose} = \beta \left\| Q_{gt} - (Q_{est} / |Q_{est}|) \right\|_{2} + \left\| t_{gt} - t_{est} \right\|_{2}; \quad \beta = 20.$$

Moon64K Dataset

Training & Testing Data

		Height (Distance from Moon)	Training Data	Testing Data	Total
	3 - 10-25 D	50 ~ 100 km	400	100	500
	N STREET	100 ~ 1,000 km	2,000	500	2,500
		1,000 ~ 2,000 km	2,000	500	2,500
		2,000 ~ 3,000 km	2,000	500	2,500
		3,000 ~ 4,000 km	1,600	400	2,000
C.C.C		Aggregate	8,000	2,000	10,000

• Image Resolution : 1024 × 768 pixels .

12

Moon64K Dataset Ground-Truth Flow

• Source Camera Coordinate \rightarrow Target Camera Coordinate : $P_t = [R \mid t]P_s$

• Target Camera Coordinate \rightarrow Target Image Coordinate :

$$p_t = \begin{bmatrix} u_t \\ v_t \\ 1 \end{bmatrix} \sim KP_t = K \begin{bmatrix} X_t \\ Y_t \\ Z_t \end{bmatrix}$$

• Solve
$$\lambda$$
? Use spherical equation !
 $(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = r^2$

Experimental Results Optical Flow

• Comparison of average end-point error (AEPE) on Moon64K dataset :

Methods	AEPE
FlowNetS	14.967
FlowNetC	11.023
FlowNet2	6.682
PWC-Net	10.059
Foreground-attention Flow Network (PA-FlowNet without Pose Regression)	3.202
PA-FlowNet	2.409

Experimental Results Optical Flow

• Comparison of average end-point error (AEPE) with different heights from Moon :

Mathada	Height from Moon (AEPE)			
wieinoas	< 1,000 km	1,000 ~ 3,000 km	≥3,000 km	
FlowNetS	13.011	15.902	15.565	
<i>FlowNetC</i>	9.020	11.839	11.987	
FlowNet2	4.141	6.283	11.494	
PWC-Net	8.130	10.639	10.778	
PA-FlowNet	2.463	2.551	1.974	

Experimental Results Relative Camera Pose

• Comparison of relative camera pose error on Moon64K dataset.:

	Relative Camera Pose Error			
wielhous	Orientation Error	Translation Error		
FlowNet2	0.987 °	0.701		
PWC-Net	1.025 °	0.783		
PA-FlowNet	<i>0.918</i> °	0.648		

Experimental Results Optical Flow Results

Source I _s	Target I_t	Ground-Truth	PWC-Net	FlowNet2	PA-FlowNet

25th International Conference on Pattern Recognition **ICPR20** 10 - 15 January, 2021

The End

Thanks for Listening!!

