

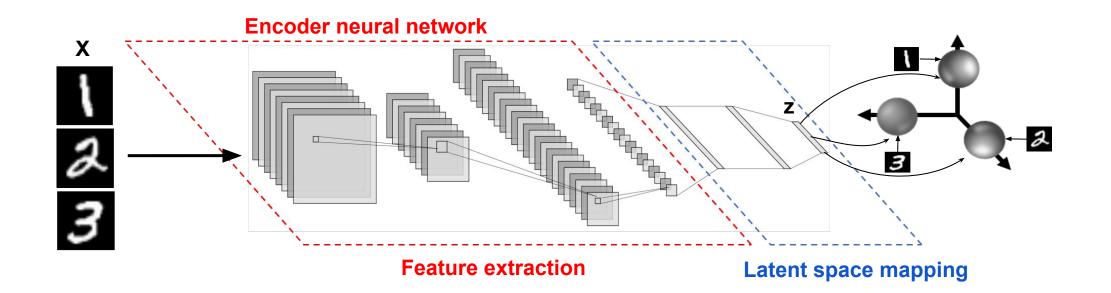
Beyond cross-entropy: learning highly separable feature distributions for robust and accurate classification

Arslan Ali, Andrea Migliorati, Tiziano Bianchi, Enrico Magli

Politecnico di Torino

GCCS - Motivation

- GCCS: Gaussian class-conditional simplex loss
- High Separability between classes
- Extract discriminative features from the input data
- Map the features to well behaved, target Gaussian distributions



GCCS - Loss

- Assumption: network output tends to a Gaussian distribution
 - compute batch statistics for each class
 - minimize KL divergence between target and obtained distribution

Proposed loss

Authorized users loss

$$\mathcal{L}_{i} = \frac{1}{i} \left[\log \frac{\left| \mathbf{\Sigma}_{Ti} \right|}{\left| \mathbf{\Sigma}_{Oi} \right|} - D + \operatorname{tr}(\mathbf{\Sigma}_{Ti}^{-1} \mathbf{\Sigma}_{Oi}) + (\boldsymbol{\mu}_{Ti} - \boldsymbol{\mu}_{Oi})^{\mathsf{T}} \mathbf{\Sigma}_{Ti}^{-1} (\boldsymbol{\mu}_{Ti} - \boldsymbol{\mu}_{Oi}) \right]$$
• target statistics
• batch statistics

- batch statistics

$$\mathcal{K}_i = \left(\frac{x - \mu_{Oi}}{\sigma_{Oi}}\right)^4$$

Total loss:
$$\mathcal{L}^{GCCS} = \sum_{i=1}^{D} \left[\mathcal{L}_i + \lambda (\mathcal{K}_i - 3) \right],$$

GCCS - Decision rule

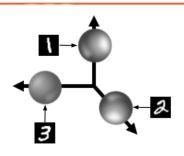
- Partition the decision space into Voronoi regions
- Compute the distance from all the centers choose minimum

$$\widehat{y} = \arg\max_{i} z_{i},$$

Index of the predicted class for the test image

GCCS - Advantages

- Equidistant classes
- Uniformity of feature distributions lack of short path
- Higher robustness
- Simple straightforward decision boundaries



Results: Maximum accuracy

Method	MNIST ResNet-18	FMNIST ResNet-18	SVHN ResNet-18	CIFAR-10 ResNet-18	CIFAR-10 Shake-Shake-96	CIFAR-100 Shake-Shake-112
GCCS - regular training	99.58	92.69	94.20	82.97	96.19	76.53
GCCS - fine tuning	99.64	93.83	95.58	81.52	97.06	77.48
No Defense - cross-entropy	99.35	91.91	94.12	78.59	95.78	76.30
Jacobian Reg regular training [60]	98.99	91.79	94.11	70.09	-	=
Jacobian Reg fine-tuning[60]	98.53	92.43	93.54	82.09	-	-
Input Gradient Reg regular training [53]	97.98	88.45	93.77	78.32	96.50	74.89
Input Gradient Reg fine-tuning [53]	99.11	92.55	93.17	76.15	96.90	75.68
Cross Lipschitz regular training [59]	96.78	92.54	91.42	80.10	.	-
Cross Lipschitz - fine-tuning [59]	98.77	92.41	93.50	79.39	<u>-</u>	-

Tab. 2 Maximum test accuracy obtained through *regular training* vs *fine-tuning* over different benchmark datasets with different competing techniques in the case in which no adversarial attack is performed.

GCCS yields high classification accuracy both for regular training and fine tuning

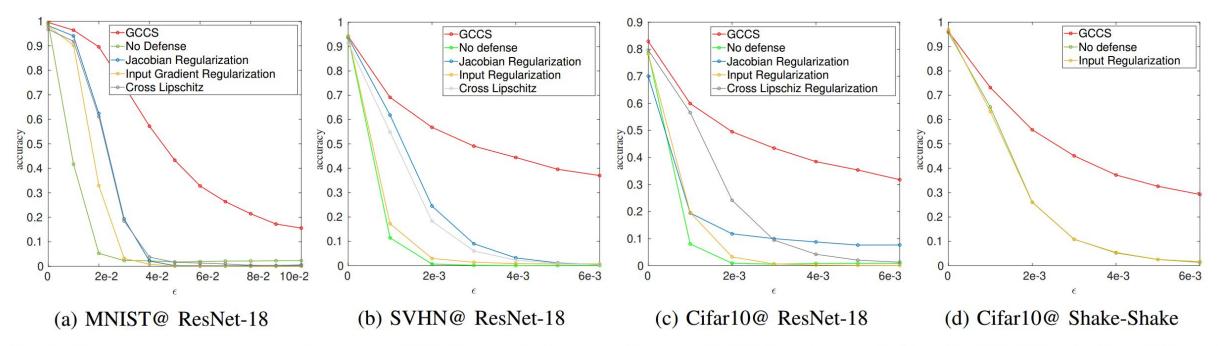
Adversarial attacks - Whitebox

- PGD
 - iterative FGSM
 - $x'_{t+1} = \text{Proj}\{x'_t + \alpha \cdot \text{sign}[\nabla_x J(\theta, x'_t, y)]\}$
- TGSM
 - descending the gradient towards target class
 - $x' = x \epsilon \cdot \text{sign}[\nabla_x J(\theta, x, y')]$
- JSMA
 - select the features to be altered to get desired output

$$\nabla l(x) = \frac{\partial l(x)}{\partial x} = \left[\frac{\partial l_j(x)}{\partial x_{\gamma}}\right]_{\gamma \in 1, \dots, M_{\text{in}}, j \in 1, \dots, M_{\text{out}}}$$

Robustness to targeted attacks

TGSM-5



Test accuracy when applying the TGSM attack (5 steps) for (a) ([MNIST, ResNet-18]); (b) ([SVHN, ResNet-18]); (c) ([CIFAR-10, ResNet-18]) (d) ([CIFAR-10, Shake-Shake-96]), for different values of ϵ .

Conclusions

- Novel loss promoting class separability and robustness
- High classification accuracy
- High robustness against adversarial attacks