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@ Class-incremental learning (CIL)

O CIL is fort the scenario where the classification model is exposed to a stream of new class training data

while the old class training data 1s unavailable when learning for new classes.

& Problem:

O A simple finetuning suffers from catastrophic forgetting, where the model's recognition performance

on the old classes degrades severely once it learns for new classes.

O To address catastrophic forgetting, most CIL works adopt the distillation-based technique. Despite the

distillation-based approach 1s claimed to be effective for CIL, it still has some critical 1ssues as follows:
* The quality of the exemplars is not guaranteed.
* Model tends to overfit to the old class exemplars.

* The CNN model also suffers from the ‘bias’ problem.
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we propose a novel CIL framework, named the topological schemas model (TSM).

O 2D-GMM

* A Gaussian mixture model arranged on 2D grids (2D-GMM) as the memory of the
learned knowledge.

* we develop a novel competitive expectation-maximization (CEM) method to train the 2D-

GMM.

0 memory preservation loss (MPL)

« MPL preserves the distribution of 2D-GMM for old knowledge during incremental

learning and alleviates catastrophic forgetting.
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Features

When learning the model at the (¢ + 1)-th session, the cross-entropy loss term L. is
applied to the output logits corresponding to St+1 and Z?. The memory preservation

loss term L, is applied to M? and the output features of Z?. After learning the
model on St+1 the 2D-GMM is grown and updated.
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(@ 2D-GMM Training

We develop a novel competitive expectation-maximization (CEM)
method to train the 2D-GMM model, which contains two steps as
follows:

O global topology embedding (TE) step

 Using Competitive Hebbian learning (CHL) technique to update the
parameters of 2D-GMM.

Olocal expectation-maximization (EM) finetuning step.
* Using EM algorithm to finetune the parameters of 2D-GMM.

2D-GMM can represent the topological structure of the data manifold.
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The memory preservation loss (MPL) is defined as follows:

M H
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k=1 h=1

Ztdenotes the episodic points. Zt = {(zk, k) }£i1 , Mk denotes the mean vector of the k-th
Gaussian distribution, 2k denotes the image whose feature is closest to (i . M?* denotes all the
Gaussian distributions. f(-; #*) denotes the feature extractor. 7] is the noise used to transformZ2 .

H 1s the number of noise types, M is the number of episodic points. Ry 1s the correlation coefficient

matrix. Let 2 = (cg;j)dxd be the covariance matrix of k-th Gaussian component. . is defined as

follows:
— G

Ry = (rij)dxad RN LT
it " G

The overall loss function at stage (¢ + 1) is:

LS, 2P M) = LB U250 XLl B, M)

The hyper-parameter )\ is used to balance the strength of the MPL term.
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Datasets: CIFAR100, SubImageNet.

Protocol: We select half of the classes as the base classes, and then equally divide the
rest classes into 5 or 10 incremental learning stages, where we use 5 session’ and ‘10
session’ to denote the corresponding settings.

Backbone network: ResNet32 for CIFAR100 and ResNet18 for SublmageNet.

Comparative methods: Finetuning, LWF, i1CaRL, EEIL, BiC and Joint-CNN (upper-
bound).
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Results on CIFAR100: Our method achieves the average accuracy of 62.52% and 60.00% under the 5 session

and 10 session settings, respectively, while the state-of-the-art BiC achieves the average accuracy of 59.31%
and 54.76%, correspondingly.

Results on SubImageNet: Our method achieves the average accuracy of 72.54% and 69.83% under the 5

session and 10 session settings, respectively. BiC achieves the average accuracy of 69.42% and 64.82%,
correspondingly.
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The comparison of confusion matrices under the
5 session setting on CIFAR100.

The horizontal axis represents the predicted
class, while the vertical one represents the
ground-truth class.

The color bar on the right indicates the
activation intensity corresponding to different
colors.
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[We propose a novel model 2D-GMM as the memory of the learned
knowledge. Meanwhile, a novel competitive expectation-maximization (CEM)

method is proposed to train 2D-GMM.

We propose a novel TSM
framework to address the
catastrophic forgetting
problem for CIL

We develop the memory preservation loss (MPL) that preserves the

\ distribution of 2D-GMM for old knowledge.
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Thanks!

Email:
cxy19960919@stu.xjtu.edu.cn
hongxiaopeng@mail.xjtu.edu.cn



