### Selecting Useful Knowledge from Previous Tasks for Future Learning in a Single Network

Feifei Shi, Peng Wang, Zhongchao Shi, Yong Rui Institute of Computing Technology, Chinese Academy of Sciences University of Chinese Academy of Sciences AI Lab, Lenovo Research Lenovo Research



- 1. Introduction
- 2. Methods
- 3. **Experiments**
- 4. Conclusions



#### Introduction

# **Previous Work**

#### PackNet

- Iterative pruning and re-training network
- Prune the unimportant weights
- Freeze all the previous weights
- Transfer all the previous weights





 Problem : PackNet transfers all the previous weights. It does not consider whether weights are helpful for current learning.

- Our idea:
  - Important weights for transfer
  - Unimportant weights are masked



#### Methods

# How to Select the Useful Knowledge

- Distinguish whether the frozen units are important
  - Units with large gradients hinder current learning
  - Units with small gradients are easy to reuse
- Gradient-based threshold method
  - Gradient pruning

 $W_0 = k * (|g|_{max} - |g|_{min}) + b$ 

- k is a coefficient, b is a constant, g represents the gradient
- Prevent excessive pruning

 $W = max(W_0, W_1)$ 

 $- W_1$  represents a upper bound

# Algorithm

Algorithm 1: Training details on the current task

```
while training the current task do
   Load previous weights into the network F.
    F \leftarrow \operatorname{data}(X, Y).
    Knowledge-Selective mask M_0 is generated
     according to the calculated threshold W.
    Reset network.
   Load previous weights into the network F.
    F is masked by M_0, which is represented F_{new}.
    F_{new} \leftarrow \text{data}(X, Y).
    Update network.
end
```



### Experiments

# **Results**

| Dataset       | PackNet | Ours  | Individual network |
|---------------|---------|-------|--------------------|
| CUBS          | 78.44   | 78.58 | 79.78              |
| Stanford Cars | 83.09   | 83.14 | 86.99              |
| Flowers       | 89.06   | 89.04 | 91.78              |
| Average       | 83.53   | 83.59 | 86.18              |

#### CLASSIFICATION ACCURACY ON VGG16.

#### CLASSIFICATION ACCURACY ON SUB DATASETS OF CUBS.

| Dataset | PackNet | Ours  | Individual network |
|---------|---------|-------|--------------------|
| CUB2    | 84.01   | 84.2  | 84.67              |
| CUB3    | 83.54   | 83.64 | 84.29              |
| CUB4    | 83.66   | 83.85 | 84.95              |
| CUB5    | 82.8    | 82.84 | 83.42              |
| Average | 83.5    | 83.63 | 84.32              |



#### Conclusions

# Conclusions

#### Main Conclusions:

- Not all previous weights are helpful for current learning
- Knowledge-selective mask picks suitable knowledge for transferring
- Gradient-based threshold method can make great use of the gradient in current Network

