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Introduction




Previous Work

 PackNet

— Iterative pruning and re-training
network

— Prune the unimportant weights
— Freeze all the previous weights
— Transfer all the previous weights
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Motivation

* Problem : PackNet transfers all the previous weights. It does
not consider whether weights are helpful for current learning.

 QOur idea:

— Important weights for transfer
— Unimportant weights are masked



Methods




How to Select the Useful Knowledge

* Distinguish whether the frozen units are important

— Units with large gradients hinder current learning
— Units with small gradients are easy to reuse

 Gradient-based threshold method

— Gradient pruning
Wo = k * (|9lmaz — |9lmin) + b
— kis a coefficient, b is a constant, g represents the gradient
— Prevent excessive pruning
W = max(Wy, W)
— W, represents a upper bound



Algorithm

Algorithm 1: Training details on the current task

while training the current task do
Load previous weights into the network F'.

F' + data(X, Y).
Knowledge-Selective mask M is generated
according to the calculated threshold W'.

Reset network.
Load previous weights into the network F'.
F' is masked by M, which is represented F),..,.
Frew < data(X, Y).
Update network.

end




Experiments
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Results

CLASSIFICATION ACCURACY ON VGG16.

Dataset PackNet | Ours | Individual network
CUBS 78.44 78.58 79.78
Stanford Cars 83.09 83.14 86.99
Flowers 89.06 89.04 91.78
Average 83.53 83.59 86.18

CLASSIFICATION ACCURACY ON SUB DATASETS OF CUBS.

Dataset | PackNet | Ours | Individual network
CUB2 84.01 84.2 84.67
CUB3 83.54 83.64 84.29
CUB4 83.66 83.85 84.95
CUBS 82.8 82.84 83.42
Average 83.5 83.63 84.32




Conclusions




Conclusions

« Main Conclusions:

— Not all previous weights are helpful for
current learning

— Knowledge-selective mask picks suitable
knowledge for transferring

— Gradient-based threshold method can make
great use of the gradient in current Network
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