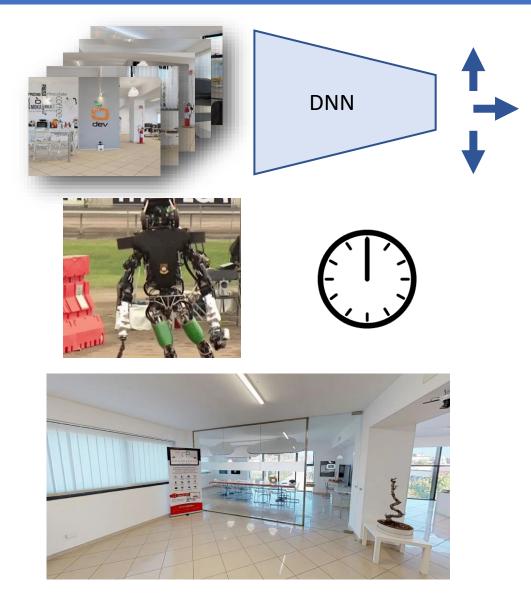
On Embodied Visual Navigation in Real Environments Through Habitat

Marco Rosano^{1,3}, Antonino Furnari¹, Luigi Gulino³, Giovanni Maria Farinella^{1,2}

¹FPV@IPLAB - Department of Mathematics and Computer Science, University of Catania, Italy ²Cognitive Robotics and Social Sensing Laboratory, ICAR-CNR, Palermo, Italy ³OrangeDev s.r.l., Firenze, Italy marco.rosano@unict.it, furnari@dmi.unict.it, luigi.gulino@orangedev.it, gfarinella@dmi.unict.it

Deep Learning Model for Navigation

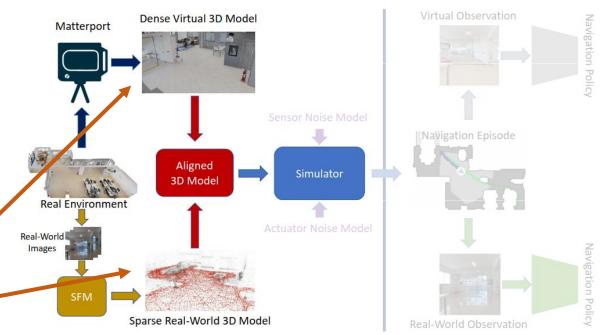


- Recent Deep Learning approaches have shown that is possible to learn navigation policies in a end-toend fashion from images
- Major drawback: they require to collect a lot of experience, acting and interactiong with the environment
- Collecting the required experience in the real word is difficult
 - Robots are costly and fragile
 - Perform the navigation episodes requires time
- Possible solution: collect the experience in simulation
 - Pros: efficient, scalable
 - Cons: the learned policies perform poorly when deployed in the real world
 - Differences in the appearance
 - No sensor and actuator noise
 - Simplified physical interaction

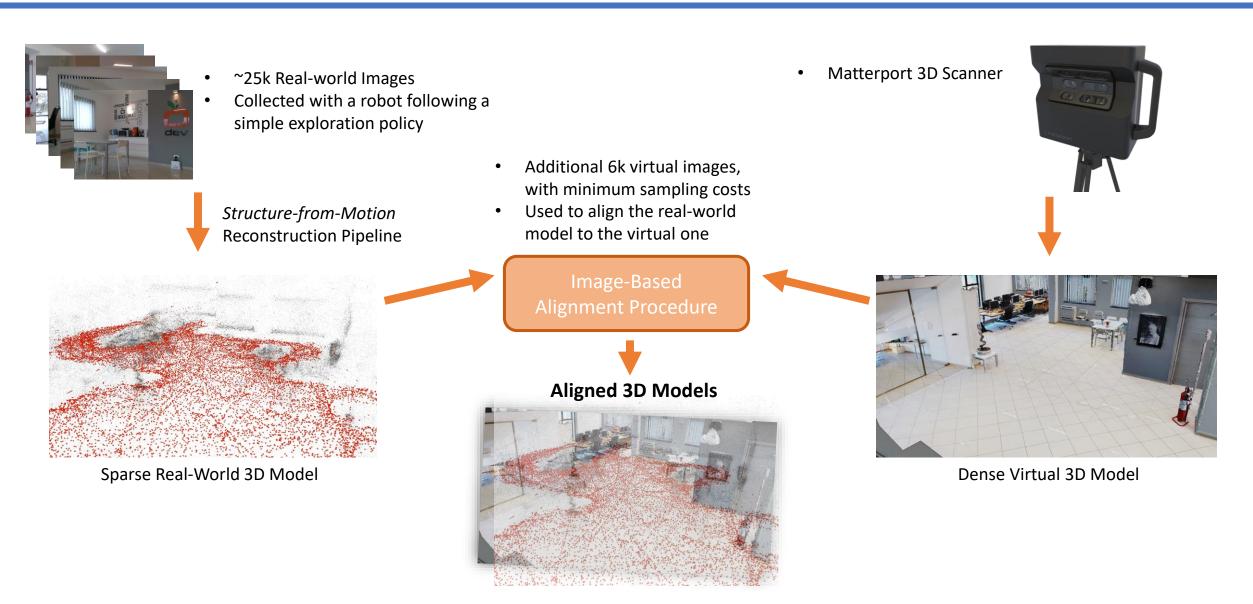
Rosano M., Furnari A., Gulino L., Farinella G.M. «On Embodied Visual Navigation in Real Environments Through Habitat» - ICPR 2020

Train in Simulation with Real-World Images

- We propose a tool based on the popular Habitat simulator[1] to train and evaluate visual navigation policies:
 - Entirely in simulation, avoiding the deploy on a physical robot
 - Using virtual and real observations
 - With realistic sensor and actuator noise
- Acquisition of two 3D models of the same environment:
 - Virtual 3D model, geometrically accurate but with a limited photorealism
 - Real-World 3D model, geometrically inaccurate but containing photo-realistic images

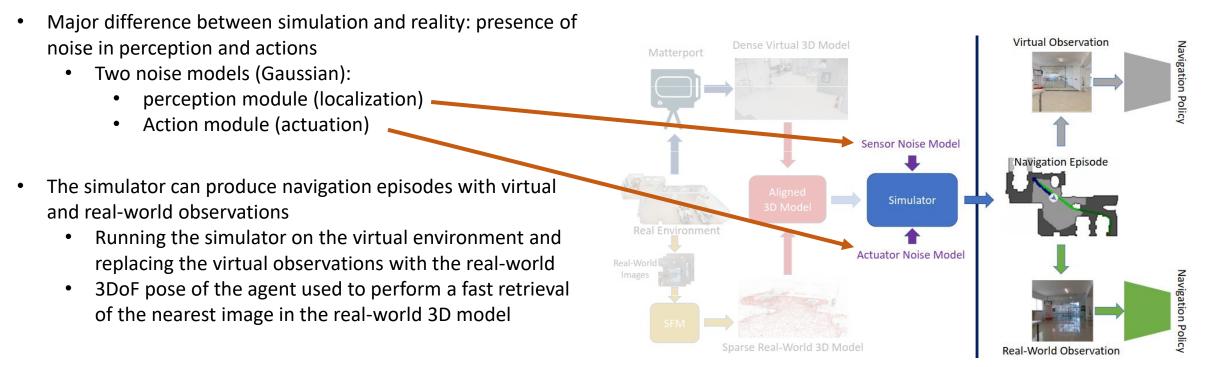


3D Models Construction and Alignment



Rosano M., Furnari A., Gulino L., Farinella G.M. «On Embodied Visual Navigation in Real Environments Through Habitat» - ICPR 2020

Introduce Real-World Inaccuracy



• camera coordinates (2D) + camera rotation, as unit vector

$$(u,v) = (\cos\theta, \sin\theta)$$

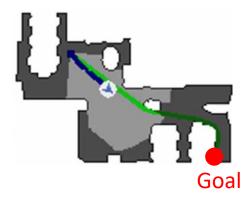
Training Setup

- We formulated the navigation as PointGoal navigation task
 - (r, θ) polar coordinates, relative to the agent's position
 - Updated after each step
- At each timestep the agent receives the 256x256 RGB image + the goal coordinates
- Discrete actions:
 - move straight by 0.25m;
 - turn left/right by 10°;
 - STOP
- Trained using the PPO (Proximal Policy Optimization)[1] Reinforcement Learning algorithm
 - Success reward 2.5;
 - slack reward -0.01;
 - reward at each step $-(distance to goal_t distance to goal_{t-1}) + slack$
- We used the RGB DD-PPO RL model [2], pretrained on the Gibson[3] and Matterport[4] datasets
 - SE-ResNeXt50 [5] visual encoder + 2 layers 512-dim LSTM [6]
 - The visual embedding is concatenated to the information about the goal coordinates and the previous action performed, then fed to the LSTM

[1] Schulman et al., Proximal Policy Optimization Algorithms». In CoRR 2017

- [2] Wijmans et al., «DD-PPO: Learning Near-Perfect PointGoal Navigators from 2.5 Billion Frames». In ICLR 2020
- [3] Xia et al., « Gibson Env: real-world perception for embodied agents». In CVPR 2018

[4] Chang et al., «Matterport3D: Learning from RGB-D Data in Indoor Environments». In 3DV 2017



^[5] Hu et al., «Squeeze-and-Excitation Networks». In CVPR 2018

^[6] Hochreiter et al., «Long short-term memory». In Neural computation 1997

Evaluation

- We randomly sampled 1000 navigation episode to evaluate the navigation episodes
 - Too easy episodes were discarded
- We split the real-world images into training and test sets of equal size, with images uniformely distributed in both sets
- An episode is considered successful if the agent calls the STOP action within 0.20m from the goal, or unsuccessful otherwise
- Navigation performance metrics:
 - SPL;
 - Success Rate (SR)

$$SPL = \frac{1}{N} \sum_{i=1}^{N} S_i \frac{l_i}{\max(p_i, l_i)}$$

where, $l_i =$ length of shortest path between goal and target for an episode

 $p_i =$ length of path taken by agent in an episode

 $S_i = \text{binary indicator of success in episode } i$

Results - Virtual to Real Policy Transfer

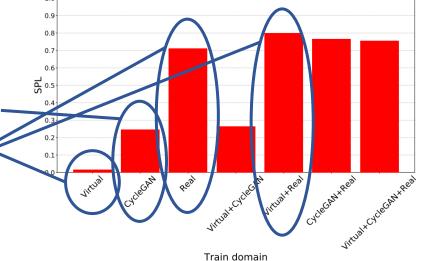
• We trained the models on different combination of virtual and real observations, and tested on real-world observations

- A+B indicates that the model was first trained on A, then finetuned on B
- CycleGAN as domain adaptation baseline
 - Trained for 50 epochs on 5k virtual images and 5k realworld images

Training Stages	SPL	Success rate	Avg. dist. from goal (meters)	# training frames (Million)
Virtual	0.0160	0.022	7.9722	2.4
CycleGAN	0.2464	0.3310	4.6065	2.4
Virtual+CycleGAN	0.2648	0.3410	4.7535	1.2 + 1.2
Real	0.7112	0.8590	0.7709	2.4
Virtual+real	0.8001	0.9700	0.2493	1.2 + 1.2
CycleGAN+real	0.7665	0.8880	0.5219	1.2 + 1.2
Virtual+CycleGAN+real	0.7553	0.9360	0.3313	1.2+1.2+1.2

VIRTUAL TO REAL POLICY TRANSFER

- The model trained only with virtual images achieved very limited performance
- The unsupervised adaptation with CycleGAN has led to significative better results
- Training the agent with real observations allows to obtain major performance improvements and pre-training the model with virtual observations allows to obtain additional improvements



Results – Actuator and Sensor Noise

- We investigate the influence of actuator and sensor noise on visual navigation
- Do navigation models become more robust if trained in the presence of sensor/actuator noise?
- Two approaches:
 - Train the model without noise, test it with noise
 - Train and test the model with the same amount of noise
- The model trained and tested without noise obtained a good performance. However, even adding small amounts of noise during test degrades performance.
- Interestingly, part of the gap in performance is generally recovered by training the models in noisy settings
- Models trained without noise tend to terminate unsuccessful episodes at a greater distance than models trained with noise
 - Most of the episodes fail in the final part, near the goal

SENSOR AND ACTUATOR NOISE WITH VIRTUAL OBSERVATIONS

Sensors noise	Actuators noise	Trained with noise	SPL	Success rate	Avg. dist. from goal (meters)
No	No	No	0.9127	0.9910	0.1291
Small	No	No Yes	0.8173 0.8658	0.8910 0.9380	0.1581 0.1065
Medium	No	No Yes	0.5075 0.7114	0.5660 0.7910	0.2404 0.1554
Large	No	No Yes	0.1552 0.3643	0.1870 0.4130	0.4909 0.2577
No	Small	No Yes	0.9092 0.9073	$0.9890 \\ 0.9820$	0.1171 0.0956
No	Medium	No Yes	$0.8903 \\ 0.8805$	$0.9700 \\ 0.9740$	0.1432 0.1150
No	Large	No Yes	0.8043 0.8381	0.8860 0.9340	0.2337 0.2322
Small	Small	No Yes	$0.8020 \\ 0.8328$	$0.8740 \\ 0.8950$	0.1876 0.1607
Medium	Medium	No Yes	0.4537 0.4715	0.5100 0.5290	0.2675 0.2712
Large	Large	No Yes	0.1288 0.2450	0.1620 0.2790	0.5442 0.4040

	Noise level			
	Small	Medium	Large	
Localization noise	0.20 <i>m</i> ; 7°	0.40 <i>m</i> ; 15°	0.80 <i>m</i> ; 30°	
Actuation noise	0.05 <i>m</i> ; 5°	0.10 <i>m</i> ; 10°	0.20 <i>m</i> ; 20°	

- We investigated the problem of transferring visual navigation policies trained in simulation to the real world
- We proposed a tool based on Habitat to train and evaluate entirely in simulation visual navigation policies on real observations and with realistic sensor and actuator noise
- Adaptation methods are much needed to obtain visual navigation policies able to generalize to the real world
- The proposed framework is a promising tool to assess and improve their generalization ability when deployed in real contexts

We publicly released the collected dataset, the code and additional videos https://iplab.dmi.unict.it/EmbodiedVN

Thank you for your time!

On Embodied Visual Navigation in Real Environments Through Habitat

Marco Rosano^{1,3}, Antonino Furnari¹, Luigi Gulino³, Giovanni Maria Farinella^{1,2}

