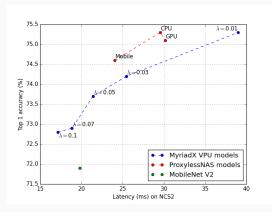

VPU SPECIFIC CNNs THROUGH NEURAL ARCHITECTURE SEARCH

Ciarán Donegan, Hamza Yous, Saksham Sinha, Jonathan Byrne

Intel R&D Ireland Ltd, Trinity College Dublin.

MOTIVATION

- · Complex CNNs are hard to deploy onto edge devices.
- Edge AI hardware accelerators Intel Movidius Vision Processing Unit (VPU).
- NAS can optimize accuracy and efficiency.
- · Differentiable NAS methods have a low search cost.



- Search space of MBConv blocks kernel size {3, 5, 7}, expansion ratio {3,6}
- Build a latency look-up-table (LUT) by profiling operations on MyriadX VPU.
- Incorporate the network latency into the loss function.

$$\mathcal{L} = \mathcal{L}_{\text{CE}} + \lambda \cdot \frac{\text{LAT} - \text{LAT}_{7}}{\text{LAT}_{7}}$$

• Search for networks using the ProxylessNAS search algorithm.

RESULTS

	Top 1 accuracy (%)	Latency on NCS2 (ms)
MobileNet V2	71.9	19.8
ProxylessNAS mobile	74.6	24.1
MyriadX VPU	72.8	17.2

COMPARISON OF NETWORK ARCHITECTURES

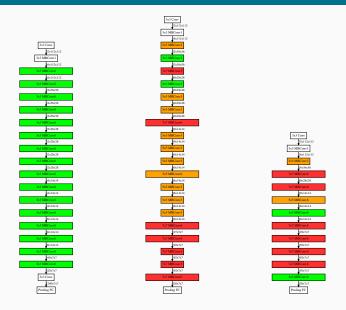


Figure 1: MobileNetV2 Figure 2: ProxylessNAS Figure 3: MyriadX VPU

CONCLUSIONS

- NAS designed network outperforms MobileNetV2 on MyriadX VPU.
 - 1% more accurate
 - · 13% faster on VPU.
- We demonstrate the use of differentiable NAS methods to design state-of-the-art networks for a specific hardware.
- Hardware specific CNNs are the future.