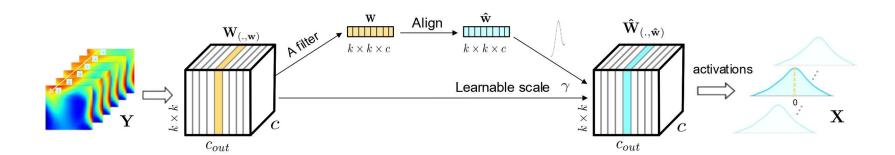
WeightAlign: Normalizing Activations by Weight Alignment

XiangWei Shi*, Yunqiang Li*, Xin Liu* and Jan van Gemert Computer Vision Lab, TU Delft, Netherlands ICPR2020

Motivation

 BatchNorm (BN) suffers from performance degradation on small batch-size that is statistically unstable.


Motivation

- BatchNorm (BN) suffers from performance degradation on small batch-size that is statistically unstable.
- Proposed WeightAlign: normalizing activations without using sample statistics.

Motivation

- BatchNorm (BN) suffers from performance degradation on small batch-size that is statistically unstable.
- Proposed WeightAlign: normalizing activations without using sample statistics.
- Our method re-parameterize the weights within a filter to reach correctly normalized activations.

Method Overview

Proposed Method

BN:
$$\hat{\mathbf{x}} = \frac{\mathbf{x} - \mu_{\beta}}{\sigma_{\beta}}, \quad \mathbf{r} = \gamma \hat{\mathbf{x}} + \beta,$$
 (1)

Proposed Method

BN:
$$\hat{\mathbf{x}} = \frac{\mathbf{x} - \mu_{\beta}}{\sigma_{\beta}}, \quad \mathbf{r} = \gamma \hat{\mathbf{x}} + \beta,$$
 (1)

Expressing statistics by weights:

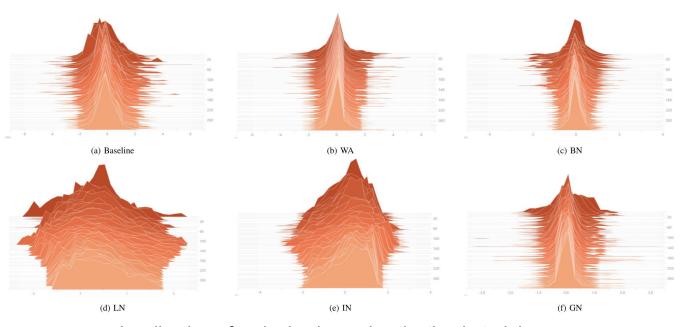
$$\mu_{\beta} = E[x] = nE[w]E[Y], \tag{2}$$

$$\sigma_{\beta}^2 = \text{Var}[x] = n(E[w^2]E[Y^2] - E^2[w]E^2[Y])$$
 (3)

Proposed Method

BN:
$$\hat{\mathbf{x}} = \frac{\mathbf{x} - \mu_{\beta}}{\sigma_{\beta}}, \quad \mathbf{r} = \gamma \hat{\mathbf{x}} + \beta,$$
 (1)

Expressing statistics by weights:


$$\mu_{\beta} = E[x] = nE[w]E[Y], \tag{2}$$

$$\sigma_{\beta}^2 = \text{Var}[x] = n(E[w^2]E[Y^2] - E^2[w]E^2[Y])$$
 (3)

WeightAlign (WA):
$$E[w] = 0, \quad \frac{1}{2}n\text{Var}[w] = 1.$$
 (4)

$$\hat{w} = \gamma \; \frac{w - E[w]}{\sqrt{n/2 \cdot \text{Var}[w]}},\tag{5}$$

Experiment results

visualization of a single channel activation in training

Experiment results

CIFAR-10								
Batch size 64				Batch size 1				
Method	Error	Method	Error	Method	Error	Method	Error	
	N2 1012							
Baseline [36]	6.46	WA	6.21	Baseline	7.27	WA	6.61	
BN [23]	4.30	BN+WA	4.29	BN	-	BN+WA	-	
IN [20]	6.49	IN+WA	6.42	IN	6.91	IN+WA	6.50	
LN [19]	5.02	LN+WA	5.12	LN	6.82	LN+WA	5.76	
GN [21]	4.96	GN+WA	4.60	GN	5.79	GN+WA	5.51	

Error rate of ResNet50 on CIFAR-10 for classification

Experiment results

model	Top-1 (%) Error	Top-5 (%) Error	
VGG16* (Baseline)	31.30	11.19	
VGG16 (BN)*	29.58	10.16	
VGG16 (WA)	29.78	10.23	
VGG16 (BN+WA)	27.07	8.78	
ResNet50 (Baseline) [†] [36]	27.60	s = 8	
ResNet50 (BN)*	24.89	7.71	
ResNet50 (WA)	26.62	8.91	
ResNet50 (BN+WA)	24.04	7.12	

Image classification on ImageNet

Thank you