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Introduction

● With the rise of deep generative models in recent years, convolutional 

neural networks (CNN) can be applied to generate faces which do not exist.

● The forged face images or videos can deliver wrong messages or damage 

human reputation through social multimedia network.
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Motivation and Contribution

● Due to the threats of fake images, it is important to develop protection 

technology to recognize them from the pristine faces.

● Contribution

○ Quantitative evaluation with different loss functions

○ Qualitative analysis using Grad-Cam and t-SNE
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Pipeline
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Pipeline (Cont’d)
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Pre-Processing

● Face detection, alignment and tracking
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Loss functions

● Types

○ Softmax Loss

○ L2-contrained Softmax Loss (L2s)

○ Large-margin Softmax Loss (L-softmax)

○ Angular Softmax Loss (A-softmax)

○ Arcface Loss

○ Center Loss

○ COCO Loss

○ Focal Loss
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Temporal Aggregation

● Max-voting through faces (MF)

● Max-voting between tracks (MT)

● Average-voting between tracks (AT)
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Datasets

● FaceForensics++

○ Contains 5000 videos with four 

manipulation methods 

○ Three different video qualities including 

raw, c23 and c40
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Metrics

● Accuracy

● AUC

● Logloss
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Results

● Intra-dataset (FaceForensics++)
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Results (Cont’d)

● Fusion
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Results (Cont’d)

● t-SNE
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Results (Cont’d)

● Intra-dataset cross-class (FaceForensics++)
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Results (Cont’d)

● Grad-Cam
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Conclusion

● Models trained on specific losses reach best performances in 

different qualities of data in FaceForensics++.

● Model trained on specific class of data (NeuralTextures) has 

transferability to another class (DeepFakes).

● Performances can be enhanced by fusing different models
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