



#### Sketch-based Community Detection via Representative Node Sampling

Andre Beckus\*<sup>†</sup>, Mahlagha Sedghi\*, and George K. Atia

Dept. of Electrical and Computer Engineering University of Central Florida

ICPR 2020

Paper #2726 Poster Session PS T1.9: Thursday, January 14<sup>th</sup>, 2021 12:30 PM CET

\* Authors contributed equally to this work† Currently at the Air Force Research Laboratory (Information Directorate)



# **Community Detection**



Community: Set of nodes with higher edge density

# **Community Detection**

≻Applications





Detecting Computer Network Attacks [Chen et al.,2017], [Antonakakis et al, '12]





# **Community Detection**

#### ≻Algorithms







#### ≽lssues

- $\circ$  Clustering can be slow
- $_{\odot}$  Difficulties in handling small clusters



# **Sketch-based Clustering**





### **Representative Node Sampling**

Given: Graph with N nodes Positive Semi-definite similarity matrix:  $\mathbf{S} \in \mathbb{R}^{N \times N}$ 

Goal: Find representation matrix  $\mathbf{R} \in \mathbb{R}^{N \times N}$ 

Encodes representation power of each node for describing others



Reward representing other samples

For more details see:

M. Sedghi, M. Georgiopoulos, and G. K. Atia, "A multi-criteria approach for fast and robust representative selection from manifolds," *IEEE Transactions on Knowledge and Data Engineering*, pp. 1–1, 2020.

### Similarity via Average Commute Time

Average commute time C(i, j):

Time for a random walk from node i to node j and then back again.

Why is it useful?

1) It reflects community structure

2) We can form embedding where distance between nodes is  $\sqrt{C(i,j)}$ 

3) We have the relation  $C(i,j) = V_G(l_{ii}^+ + l_{jj}^+ - 2l_{ij}^+)$ 

 $\mathbf{L}^+$  is the pseudoinverse of the Laplacian

 $\Rightarrow L^+$  is the gram matrix for the embedded nodes.

Our similarity matrix  ${\boldsymbol{S}}$  is the cosine similarity derived from  ${\boldsymbol{L}}^+ {\boldsymbol{:}}$ 

$$s_{ij} = \frac{l_{ij}^+}{\sqrt{l_{ii}^+ l_{jj}^+}}$$

Free benefit: We can use same similarity matrix for the inference step as well



# Algorithm

Problem is convex ADMM-based algorithm:

```
Algorithm 2 Proposed Representative Node Sampling Method
Require: Similarity matrix S, Regularization parameter \lambda, initialize
    all optimization variables to zero.
Ensure: Sampled Representative Node Indices index = []
 1: Obtain the optimal representation matrix
    while not converged
       Update \Delta, R, Q according to (7) - (10)
    end while
    \mathbf{R}^* = \mathbf{R}^t
 2: Locate Representative Samples
    for i = 1 ... n. do
      rn(i) = \left\| \mathbf{R}_{i,\cdot}^* \right\|_2
      if rn(i) \neq 0
         index = [index, i]
      end if
    end for
 3: return index
```

Both ADMM algorithm and calculation  $L^+$  are amenable to parallelization.

 $\mathcal{O}(N^{1.373} \lceil N/P \rceil)$  P = number of processors



### Experiments

Clustering step: Convexified Modularity Maximization (CMM)

Compare against other sampling based techniques:

- Uniform Random Sampling (URS) [1]
- Spatial Random Sampling (SRS) [1]
- SamPling Inversely proportional to Node Degree (SPIN) [2]

- [1] M. Rahmani, A. Beckus, A. Karimian, and G. K. Atia, "Scalable and robust community detection with randomized sketching," *IEEE Trans. Signal Process.*, vol. 68, pp. 962–977, 2020
- [2] A. Beckus and G. K. Atia, "Scalable community detection in the heterogeneous stochastic block model," in *Proc. IEEE 29th Int. Workshop Mach. Learn. Signal Process*, Oct 2019, pp. 1–6



### Experiments - SBM



#### Homogeneous SBM



- Uniform intra-cluster edge density for graph
- Three clusters  $n_{min}$  is size of smallest cluster
- Smaller  $n_{min}$  indicates more imbalance

#### Clustering time in seconds

| N     | Sketch-based         | Full Graph        |
|-------|----------------------|-------------------|
| 400   | $4 \times 10^{-2}$   | $3.0 \times 10^0$ |
| 800   | $1.8 	imes 10^{-1}$  | $1.4 \times 10^1$ |
| 1600  | $7.2 \times 10^{-1}$ | $9.3 \times 10^1$ |
| 3200  | $1.9 	imes 10^0$     | $7.8 	imes 10^2$  |
| 6400  | $9.7 	imes 10^0$     | $6.3 \times 10^3$ |
| 12800 | $6.7 	imes 10^1$     | $4.6 \times 10^4$ |
|       |                      |                   |



- Intra-cluster edge density varies for each cluster
- Smaller  $n_{sparse}$  indicates more imbalance.



### Experiments - Real World

#### Misclassification rate for the discrete DCSBM example

| p    | Full Graph | Sketch-based Algorithm |       |       |       |  |
|------|------------|------------------------|-------|-------|-------|--|
| Р    |            | Proposed               | URS   | SPIN  | SRS   |  |
| 0.05 | 0.095      | 0.102                  | 0.513 | 0.578 | 0.525 |  |
| 0.10 | 0          | 0                      | 0.131 | 0.338 | 0.159 |  |
| 0.15 | 0          | 0                      | 0.024 | 0.085 | 0.037 |  |

For Degree Corrected SBM: Average degree varies for each *node* 

#### Misclassification rate for power law DCSBM example

| p    | Full Graph | Sketch-based Algorithm |       |       |       |
|------|------------|------------------------|-------|-------|-------|
| 1    | 1          | Proposed               | URS   | SPIN  | SRS   |
| 0.05 | 0.064      | 0.052                  | 0.326 | 0.432 | 0.362 |
| 0.10 | 0.004      | 0.004                  | 0.122 | 0.333 | 0.150 |
| 0.15 | 0.002      | 0.002                  | 0.034 | 0.214 | 0.058 |
| 0.20 | 0          | 0                      | 0.011 | 0.090 | 0.019 |

#### Misclassification rate for the Political Blogs dataset

| Dataset    | Full Graph | Sketch-based Algorithm |       |       |       |
|------------|------------|------------------------|-------|-------|-------|
|            | I          | Proposed               | URS   | SPIN  | SRS   |
| Full       | 0.050      | 0.052                  | 0.178 | 0.438 | 0.218 |
| Unbalanced | 0.437      | 0.142                  | 0.224 | 0.334 | 0.289 |



# Take Away

Way to sample nodes from graph
• Samples nodes with good representation power

# Sketch-based community detection Speed-up clustering step Handle unbalanced graphs

<u>ICPR 2020</u>

Paper #2726 Poster Session PS T1.9: Thursday, January 14<sup>th</sup>, 2021 12:30 PM CET

#### <u>Acknowledgement</u>

This work was supported in part by NSF CAREER Award CCF-1552497.