Exploiting Elasticity in Tensor Ranks for Compressing Neural Networks

Jie Ran[^], Rui Lin, Hayden K.H. So, Graziano Chesi, Ngai Wong

Introduction

Low Rank Approximation

Tensor Factorization

- Canonical Polyadic (CP) decomposition
 - ➤ Drawbacks:
 - 1) Ranks need to be selected manually.
 - 2) Only works well when one or two layers are compressed.
- Tucker decomposition

Rank Selection

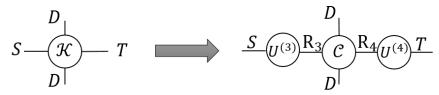
- Variational Bayesian Matrix Factorization (VBMF)
 - > Drawbacks:
 - 1) A globally or locally optimal combination of ranks is not guaranteed.
 - 2) Once the ranks are set, they remain fixed during the fine-tuning stage.

Contributions

- Exploit the elasticity in tensor ranks during training by adding a nuclear-norm-like regularizer to the loss function.
- Analyze variation of ranks in early convolution layers to deeper ones, which could be guidance to remove redundancy in wide layers without much information loss.
- Propose a generic rank selection method which can be applied for low-rank convolutional neural network (CNN) approximation together with other techniques.

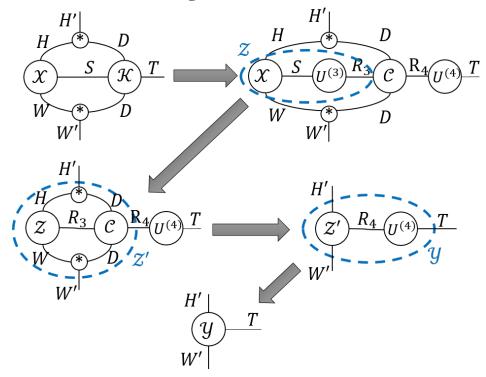
Tucker-2 Decomposition

Tucker-2 Decomposition



Tucker-2 decomposition on a kernel tensor.

3-stage Convolution



The convolution process after the decomposition.

Key: Find Tucker ranks.

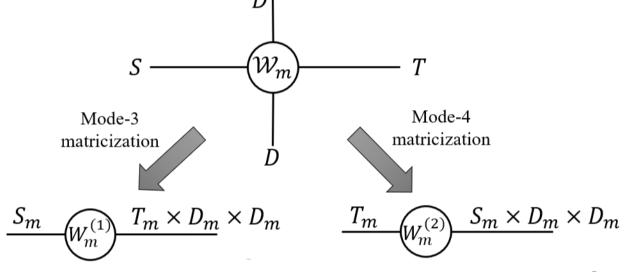
Kernel tensor: $\mathcal{K} \in \mathbb{R}^{S \times T \times D \times D}$ Input feature: $\mathcal{X} \in \mathbb{R}^{H \times W \times S}$

Output feature: $\mathcal{Y} \in \mathbb{R}^{H' \times W' \times T}$ Core tensor: $\mathcal{C} \in \mathbb{R}^{R_3 \times R_4 \times D \times D}$

Factorization matrix: $U^{(3)} \in \mathbb{R}^{S \times R_3}$, $U^{(4)} \in \mathbb{R}^{T \times R_4}$

Main Idea

Matricization



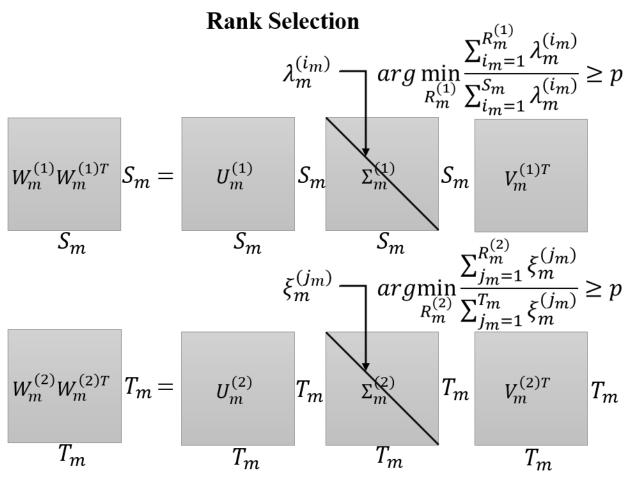
Nuclear-norm-based regularizer:

$$L_n = \frac{1}{2M} \sum_{m=1}^{M} \left(tr(\mathbf{W}_m^{(1)} \mathbf{W}_m^{(1)T}) + tr(\mathbf{W}_m^{(2)} \mathbf{W}_m^{(2)T}) \right)$$

• Given the training dataset $D = \{(\boldsymbol{x}_1, \boldsymbol{y}_1), (\boldsymbol{x}_2, \boldsymbol{y}_2), \cdots, (\boldsymbol{x}_N, \boldsymbol{y}_N)\}$ and weights parameter $\boldsymbol{\mathcal{W}}$ in the network, $\boldsymbol{\mathcal{W}}_{cl} \subseteq \boldsymbol{\mathcal{W}}$ are all convolution layers with kernel size larger than 1×1 , α is the scaling factor. Our initialization is determined by:

$$egin{aligned} \mathcal{J}(oldsymbol{\mathcal{W}}) &= rac{1}{N}(\sum_{i=1}^{N} \mathcal{L}((oldsymbol{x}_i, oldsymbol{y}_i), oldsymbol{\mathcal{W}})) + lpha L_n(oldsymbol{\mathcal{W}}_{cl}), \ oldsymbol{w}^* &= rg \min_{oldsymbol{\mathcal{W}}} \mathcal{J}(oldsymbol{\mathcal{W}}) \end{aligned}$$

Main Idea



- $\begin{array}{c} \arg \min_{R_m^{(1)}} \frac{\sum_{i_m=1}^{R_m^{(1)}} \lambda_m^{(i_m)}}{\sum_{i_m=1}^{S_m} \lambda_m^{(i_m)}} \geq p \end{array} & \text{Considering sum of the singular} \\ & \text{values (SVs) in } W_m^{(1)} W_m^{(1)T} \text{ and} \\ & W_m^{(2)} W_m^{(2)T} \text{ as "energy".} \end{array}$
 - Retain the leading singular values using a threshold ratio p.
 - Define new rank as the minimum number of SVs which preserve a certain percentage of energy.

Experiments

Effect of Regularizer on SVs of the Parameters

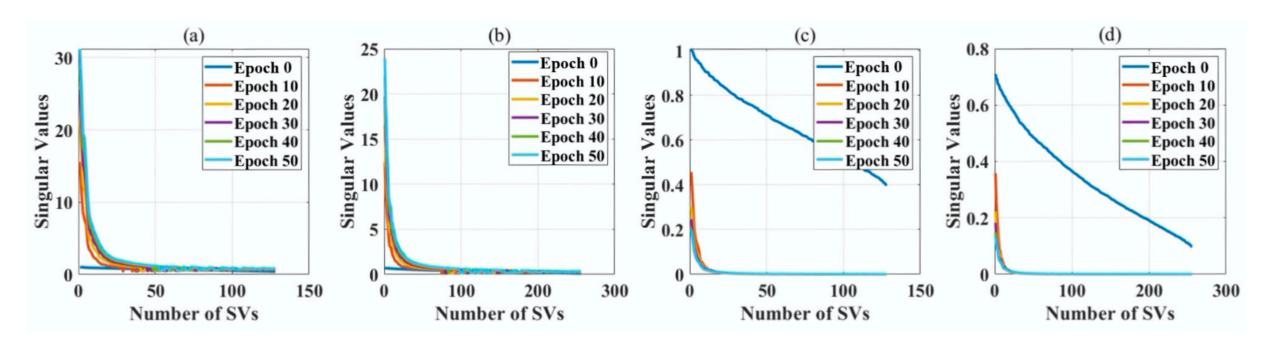


Fig. (a) and (c) show the trends of SVs of $W_m^{(1)}W_m^{(1)T}$ without and with regularizer, respectively. (b) and (d) show the trends of SVs $W_m^{(2)}W_m^{(2)T}$ without and with regularizer, respectively. It is obvious that when the regularizer is included in the training process, SVs keeps decreasing as the number of training epochs increases.

Experiments

Layer-wise Analysis of Compression Ratios

Layer-wise analysis on ResNet18. S: input channel dimension, T: output channel dimension, R_3 and R_4 are Tucker-2 ranks. p=95% to select ranks.

Layer	S/R_3	T/R_4	#Parameters		
conv1	256	256	589.82K		
conv1 (VBMF)	168	176	$354.18K(\times 1.67)$		
conv1 (NRMF)	144	141	$255.70K(\times 2.31)$		
conv2	256	512	1.18M		
conv2 (VBMF)	194	275	$670.61K(\times 1.76)$		
conv2 (NRMF)	222	299	$807.32K(\times 1.46)$		
conv3	512	512	2.36M		
conv3 (VBMF)	332	328	$1.32M(\times 1.79)$		
conv3 (NRMF)	292	212	$815.18K(\times 2.89)$		
conv4	512	512	2.36M		
conv4 (VBMF)	348	342	$1.42M(\times 1.66)$		
conv4 (NRMF)	160	69	$216.61K(\times 10.89)$		
conv5	512	512	2.36M		
conv5 (VBMF)	382	392	$1.74M(\times 1.35)$		
conv5 (NRMF)	31	39	$46.72K(\times 50.50)$		

- Show the advantages of dynamic rank search in NRMF over the fixed-rank approach in VBMF
- Reveals the unexploited data redundancy for deeper compression.

Experiments

Performances on Various Datasets and Neural Networks

PERFORMANCE COMPARISON ON CIFAR-10

PERFORMANCE COMPARISON ON CIFAR-100

Model	Rank Selection	Top-1 Accuracy (%)	#Parameters	Model	Rank Selection	Top-1 Acc. (%)	Top-5 Acc. (%)	#Parameters
AlexNet	Baseline	91.85	57.04M		Baseline	71.12	91.75	57.41M
	VBMF	91.29	55.93M	AlexNet	VBMF	69.73	90.51	56.32M
	NRMF	91.03	55.05M		NRMF	68.97	90.06	55.45M
GoogLeNet	Baseline	95.53	5.61M		Baseline	78.96	95.56	5.70M
	VBMF	96.18	4.20M	GoogLeNet	VBMF	79.50	95.88	4.27M
	NRMF	95.57	4.08M		NRMF	78.93	95.25	4.14M
DenseNet	Baseline	96.56	6.96M	DenseNet	Baseline	81.43	96.30	7.06M
	VBMF	95.29	5.85M		VBMF	82.98	96.13	5.92M
	NRMF	96.99	5.85M		NRMF	83.53	96.70	5.90M

PERFORMANCE COMPARISON ON IMAGENET

Model	Rank Selection	Top-1 Acc. (%)	Top-5 Acc. (%)) #Parameters
	Base	69.76	89.08	11.69M
ResNet18	VBMF	67.20	87.88	7.50M
	NRMF	67.27	87.7	6.81M

Thank you!