

Collaborative Human Machine Attention Module for Character Recognition

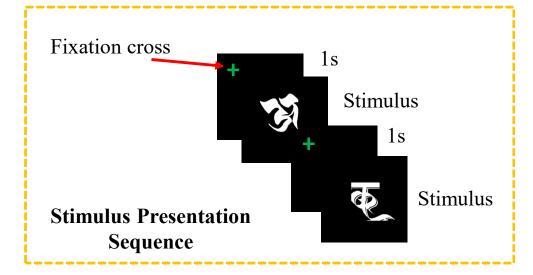
Chetan Ralekar¹, Tapan Kumar Gandhi¹, Santanu Chaudhury^{1,2}

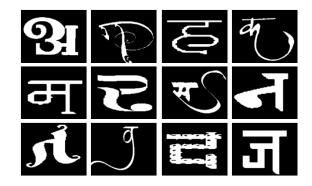
¹Department of Electrical Engineering, IIT Delhi, India ²Department of Computer Science and Engineering, IIT Jodhpur, India

Presented by: Chetan Ralekar (chetan.ralekar@gmail.com)

Introduction

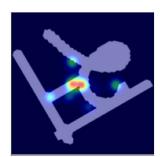
- Convolutional neural networks (CNNs) have shown impressive performance on various vision tasks by learning rich representations
- Attention mechanism tells 'where to focus' and improves representations*
- Most of the attention models considered attention mechanism to be a pure machine vision optimization problem
- Visual attention remains a neglected aspect

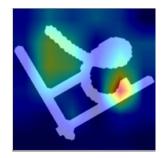



Visual Attention

Participant sitting in front of Eyetracker

Stimuli

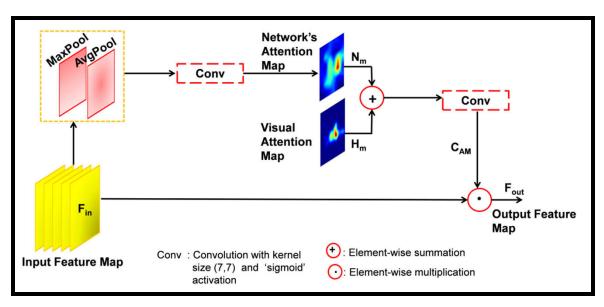

Heat Map of Visual Fixations



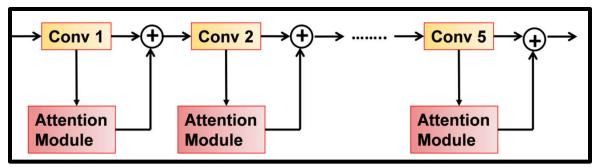
Motivation

Input character

Visual attention map


 Visualization map for AlexNet Using Grad-CAM* technique

- Human attention is highly focused
- Eye-tracker captures foveal regions
- Para-foveal regions important for recognition



Proposed Attention Module

Schematic of Collaborative Human-Machine Attention Module

Placement of module in the network

Ablation Experiments

Network's Spatial Attention

Sr. No.	Network	Test Accuracy
1	Baseline (AlexNet)	80.08
2	Spatial attention using Average Pool	82.77
3	Spatial attention using Max Pool	82.05
4	Concatenation of Max and Average Pool	83.61

Combining Human and Network Attention map

Sr. No.	Network	Test Accuracy
1	Baseline (AlexNet)	80.08
2	Element wise summation	83.61
3	Element wise Multiplication	82.91

Comparative Analysis

Sr. No.	Network	Test Accuracy
1	Baseline (AlexNet)	80.08
2	DeepSupervision (ICDARW-19*)	82.05
3	Fusion all layers (inspired by SonoEyeNet**)	68.71
4	Late fusion (SonoEyeNet**)	78.15
5	Proposed Module	83.61

Conclusions

- Collaborative Human-Machine attention module decides 'where' to focus
- The visual attention map covers image regions focused by humans and spatial attention maps spans other relevant regions
- The combination of visual and spatial attention maps brings finer refinement in feature maps
- The proposed module can be integrated with any CNN architecture resulting in better performance

Acknowledgements

- We would like to thank all the participants participating in the study
- Thanks to Visvesvaraya PhD scheme for providing financial assistance to first author (MEITY-PHD-589) to carry out research

