Multi-view Object Detection Using Epipolar Constraints within Cluttered X-ray Security Imagery

Knife

Brian K.S. Isaac-Medina*, Chris G. Willcocks*, Toby P. Breckon*† Department of {*Computer Science, †Engineering} Durham University, Durham, UK

25th International Conference on Pattern Recognition January 2021

Introduction

Contemporary X-ray scanners used for aviation security screening provide two or more views

The geometry of two views of the same scene is related by epipolar geometry

- **Uncalibrated** cameras.
- Feature detection and matching is not suitable for transmission imagery. \bullet
- Multi-view information has **not been integrated** before.
- We use **object-level annotations** to estimate the fundamental matrix

Fundamental Matrix Estimation

Multi-view Epipolar Detection Confidence

The distance to the epipolar line is

$$\begin{aligned} d'(\mathbf{x}',\mathbf{l}') &= \frac{\mathbf{x}'^{\mathsf{T}}\mathbf{l}'}{\sqrt{l_1'^2 + l_2'^2}} = \frac{1}{\sqrt{l_1'^2 + l_2'^2}} (\bar{\mathbf{x}}'^{\mathsf{T}}\mathbf{l}' + l_1'\Delta\hat{x} + l_2'\Delta\hat{y}) \\ \mathbf{f} \ \bar{\mathbf{x}}' \text{ is the true correspondence } \ \bar{\mathbf{x}}'^{\mathsf{T}}\mathbf{l}' = 0. \text{ Then} \\ d'(\mathbf{x}',\mathbf{l}') &\sim \mathcal{N}(\mu_{d'},\sigma_{d'}^2) \end{aligned}$$

The sum of the tails for a given *d* is taken as a multi-view epipolar confidence

$$p(d') = \operatorname{erfc}\left(\frac{d' - \mu_{d'}}{\sqrt{2}\sigma_{d'}}\right)$$

Multi-view filtering

- 1. Object detector predictions
- 2. Find epipolar lines for each detected object
- Validate bounding boxes by their epipolar confidence
- 4. Perform NMS

Results

Object Detector: YOLOv3¹

Cageory	Method	AP	AP _{0.5}	AP _{0.75}	APs	AP _M	APL	AR ₁	AR ₁₀	AR _s	AR _M	AR
Firearm	SV	0.670	0.983	0.816	-	0.681	0.630	0.743	0.747	-	0.744	0.776
	MV	0.691	0.988	0.848	-	0.702	0.679	0.746	0.749	-	0.747	0.775
Laptop	SV	0.705	0.972	0.886	-	-	0.705	0.770	0.772	-	-	0.772
	MV	0.697	0.973	0.872	-	-	0.697	0.764	0.766	-	-	0.766
Knife	SV	0.320	0.756	0.236	0.083	0.349	0.175	0.440	0.447	0.112	0.464	0.263
	MV	0.382	0.800	0.322	0.125	0.412	0.138	0.455	0.463	0.154	0.478	0.287
Camera	SV	0.530	0.848	0.621	-	0.700	0.530	0.605	0.605	-	0.700	0.605
	MV	0.546	0.881	0.633	-	0.700	0.546	0.603	0.603	-	0.700	0.602
All	SV	0.557	0.882	0.640	0.083	0.577	0.510	0.640	0.643	0.112	0.636	0.604
	MV	0.579	0.910	0.669	0.125	0.605	0.515	0.642	0.645	0.154	0.641	0.608

[1] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You only look once: Unified, real-time object detection," in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779-788.

Results

Conclusions

- Fundamental matrix estimation using bounding box centroids
- Epipolar confidence reduces false positives
- Improved benchmark against single-view
 - \circ AP increased 2.2% and AP_{0.5} increased 2.8%
 - Recall was unaffected

Multi-view Object Detection Using Epipolar Constraints within Cluttered X-ray Security Imagery Brian K.S. Isaac-Medina, Chris G. Willcocks, Toby P. Breckon

