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Introduction



Introduction

Low-bit quantized neural networks (QNNs) allow us to:

e accelerate inference;
e decrease model size;
e perform real-time computation on low-powered devices;

e follow paradigm of edge intelligence.



Problems

Low-bit QNNs do not suit end devices of general architecture well:
e one can not directly use BLAS libraries for matrix
multiplication;
e CPUs allow only 8-bit (or multiple) access and computations;

e no known efficient CPU implementations for lower than 8-bit
quantization.



Our work

e We provide a novel algorithm for fast inference of 4-bit
quantized neural network on CPU, based on a fast

multiplication (used in convolution and fully-connected layers).

o We experimentally prove its efficiency for ARM architecture.



4-bit QNN



Quantization scheme

Linear quantization method:
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where w; denotes quantized values, w; are floating-point values, s is scale
factor, z is a zero-point (offset), p is a number of bits used in quantized
values



Quantized multiplication

Let's consider the quantized approximation of matrix multiplication
R = WX:
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where rj; denotes values of R matrix, wy and x; are values of W and X
matrices, Wy and Wy, are their quantized approximations, s, and s, are
scale factors, z, and z, are zero-points and D is a depth of
multiplication.



Quantized multiplication micro-kernel
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Quantized convolutional layer

e Perform Im2col transformation to turn convolution into matrix

multiplication.

e Compute matrix multiplication (4-bit to 16-bit):
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k=1 k=1 k=1

e Save floating-point scale factor:

Sy = SwSx



Quantized neural network

We can combine quantized (Q) and not quantized (F) layers in

neural network:

e F — F. Input: floating-point activation. Qutput: floating-point
activation.

e F — Q. Input: floating-point activation. It is quantized to 4-bit
integer with scale factor s,. Output: 16-bit integer activation, scale
factor s = s,s,,.

e Q — Q. Input: 16-bit integer activation, scale factor s*.
Activation is quantized to 4-bit integer with scale factor s,.
Output: 16-bit integer activation, scale factor s = s,s,,s*.

e Q — F. Input: 16-bit integer activation, scale factor s*. Activation
is converted back to floating-point by multiplication by s*. Output:
floating-point activation.



Experiments



Matrix multiplication test
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10 8.3 8.3 4.6 3.9 ns
100 40 21 21 12 8.4 us
100 53 52 28 19 us
10 32 33 17 14 us
8 400 40 90 90 50 33 us
100 | 0.21 | 0.21 | 0.15 0.11 | ms
10 | 0.13 | 0.14 | 0.070 | 0.058 | ms
1600 40 0.35 0.36 0.25 0.19 ms
100 | 2.2 2.4 0.78 0.55 | ms
10 15 15 9.1 6.2 us
100 40 44 43 24 15 us
100 | 0.11 | 0.10 | 0.054 | 0.032 | ms
10 62 61 35 24 us
24 400 40 0.18 0.17 0.096 0.058 ms
100 | 0.44 | 0.42 | 0.24 0.15 | ms
10 | 0.24 | 0.24 | 0.14 | 0.097 | ms
1600 [ 40 | 0.72 | 0.71 | 0.43 0.28 | ms
100 | 3.2 3.1 1.2 0.76 | ms

Measured on
ODROID-XU4
single-board
computer with
Samsung
Exynosb422
ARM processor
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QNN test

e 36 MRZ character recognition from MIDV-500 dataset

e ODROID-XU4 single-board computer with Samsung Exynos5422
ARM processor

IDDLKLKTO10089212<<<<<<<<K<K<<<<<K

# Layer Activation Parameters
type function

1 Conv RelLU 8 filters 5 X 5, stride 1 x 1

2 Conv RelLU 8 filters 3 X 3, stride 1 X 1

3 Conv ReLU 8 filters 3 X 3, stride 2 X 2

4 Conv ReLU 16 filters 3 X 3, stride 1 X 1

5) Conv ReLU 16 filters 3 x 3, stride 2 x 2

6 Conv ReLU 24 filters 3 X 3, stride 1 x 1

7 FC SoftMax 36 neurons
Model Accuracy Accuracy Convolution Total

synthetic, % MIDV, % time, ms time, ms
CNN 99.8 95.6 0.99 1.22

QNN-8 99.7 95.4 0.55 0.74
QNN-4 99.2 95.0 0.45 0.63
QNN-32 - - 1.16 1.47
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Results

e Our 4-bit quantized matrix multiplication works about 3 times
faster than floating-point multiplication from Eigen library and
1.5 times faster than 8-bit quantized multiplication similar to
gemmlowp library

e Our 4-bit QNN works about 2 times faster than traditional
CNN and 1.2 times faster than 8-bit QNN of the same
architecture.

e The real-world problem of OCR recognition on the MIDV-500
dataset demonstrates 95.0% accuracy, while the floating-point
network gives 95.6% accuracy.
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