
Fast Implementation of 4-bit Convolutional

Neural Networks for Mobile Devices

Anton Trusov1, 3, Elena Limonova1, 2, 3, Dmitry Slugin2, 3,

Dmitry Nikolaev2, 3, 4, Vladimir V. Arlazarov2, 3

1Moscow Institute of Physics and Technology

2Institute for Systems Analysis, FRC CSC RAS

3Smart Engines Service LLC

4Institute for Information Transmission Problems RAS

1

Introduction

Introduction

Low-bit quantized neural networks (QNNs) allow us to:

• accelerate inference;

• decrease model size;

• perform real-time computation on low-powered devices;

• follow paradigm of edge intelligence.

2

Problems

Low-bit QNNs do not suit end devices of general architecture well:

• one can not directly use BLAS libraries for matrix

multiplication;

• CPUs allow only 8-bit (or multiple) access and computations;

• no known efficient CPU implementations for lower than 8-bit

quantization.

3

Our work

• We provide a novel algorithm for fast inference of 4-bit

quantized neural network on CPU, based on a fast

multiplication (used in convolution and fully-connected layers).

• We experimentally prove its efficiency for ARM architecture.

4

4-bit QNN

Quantization scheme

Linear quantization method:

ŵi =
⌊wi

s

⌋
− z

s =
max(maxi wi , 0)−min(mini wi , 0)

2p − 1

z = min(min
i

wi , 0),

where ŵi denotes quantized values, wi are floating-point values, s is scale

factor, z is a zero-point (offset), p is a number of bits used in quantized

values

5

Quantized multiplication

Let’s consider the quantized approximation of matrix multiplication

R = WX :

rij =
D∑

k=1

wikxkj ≈
D∑

k=1

sw (ŵik − zw)sx(x̂kj − zx)

= sw sx
(D∑

k=1

ŵik x̂kj − zw

D∑
k=1

x̂kj − zx

D∑
k=1

ŵik + Dzxzw
)

where rij denotes values of R matrix, wik and xkj are values of W and X

matrices, ŵik and ŵik are their quantized approximations, sw and sx are

scale factors, zw and zx are zero-points and D is a depth of

multiplication.

6

Quantized multiplication micro-kernel

(a) RHS

(b) LHS

Figure 1: The order or values of

right (1a) and left (1b) matrices in

temporal buffers

(a) The

smaller kernel

(b) The bigger

kernel

Figure 2: The kernel layout.

7

Quantized convolutional layer

• Perform Im2col transformation to turn convolution into matrix

multiplication.

• Compute matrix multiplication (4-bit to 16-bit):

r̂ij =
D∑

k=1

ŵik x̂kj − zw

D∑
k=1

x̂kj − zx

D∑
k=1

ŵik + Dzxzw ,

• Save floating-point scale factor:

sr = sw sx

8

Quantized neural network

We can combine quantized (Q) and not quantized (F) layers in

neural network:

• F → F. Input: floating-point activation. Output: floating-point

activation.

• F → Q. Input: floating-point activation. It is quantized to 4-bit

integer with scale factor sx . Output: 16-bit integer activation, scale

factor s = sxsw .

• Q → Q. Input: 16-bit integer activation, scale factor s∗.

Activation is quantized to 4-bit integer with scale factor sx .

Output: 16-bit integer activation, scale factor s = sxsw s
∗.

• Q → F. Input: 16-bit integer activation, scale factor s∗. Activation

is converted back to floating-point by multiplication by s∗. Output:

floating-point activation.

9

Experiments

Matrix multiplication test

H
eig

h
t

W
id
th

D
ep

th

F
lo
a
tin

g
p
o
in
t
3
2
-b
it

tim
e

In
t
3
2
-b
it

tim
e

U
n
sig

n
ed

in
t
8
-b
it

tim
e

U
n
sig

n
ed

in
t
4
-b
it

tim
e

U
n
it

8

100

10 8.3 8.3 4.6 3.9 µs

40 21 21 12 8.4 µs

100 53 52 28 19 µs

400

10 32 33 17 14 µs

40 90 90 50 33 µs

100 0.21 0.21 0.15 0.11 ms

1600

10 0.13 0.14 0.070 0.058 ms

40 0.35 0.36 0.25 0.19 ms

100 2.2 2.4 0.78 0.55 ms

24

100

10 15 15 9.1 6.2 µs

40 44 43 24 15 µs

100 0.11 0.10 0.054 0.032 ms

400

10 62 61 35 24 µs

40 0.18 0.17 0.096 0.058 ms

100 0.44 0.42 0.24 0.15 ms

1600

10 0.24 0.24 0.14 0.097 ms

40 0.72 0.71 0.43 0.28 ms

100 3.2 3.1 1.2 0.76 ms

Measured on

ODROID-XU4

single-board

computer with

Samsung

Exynos5422

ARM processor

10

QNN test

• 36 MRZ character recognition from MIDV-500 dataset

• ODROID-XU4 single-board computer with Samsung Exynos5422

ARM processor

Layer Activation Parameters

type function

1 Conv ReLU 8 filters 5 × 5, stride 1 × 1

2 Conv ReLU 8 filters 3 × 3, stride 1 × 1

3 Conv ReLU 8 filters 3 × 3, stride 2 × 2

4 Conv ReLU 16 filters 3 × 3, stride 1 × 1

5 Conv ReLU 16 filters 3 × 3, stride 2 × 2

6 Conv ReLU 24 filters 3 × 3, stride 1 × 1

7 FC SoftMax 36 neurons

Model Accuracy Accuracy Convolution Total

synthetic, % MIDV, % time, ms time, ms

CNN 99.8 95.6 0.99 1.22

QNN-8 99.7 95.4 0.55 0.74

QNN-4 99.2 95.0 0.45 0.63

QNN-32 - - 1.16 1.47 11

Results

• Our 4-bit quantized matrix multiplication works about 3 times

faster than floating-point multiplication from Eigen library and

1.5 times faster than 8-bit quantized multiplication similar to

gemmlowp library

• Our 4-bit QNN works about 2 times faster than traditional

CNN and 1.2 times faster than 8-bit QNN of the same

architecture.

• The real-world problem of OCR recognition on the MIDV-500

dataset demonstrates 95.0% accuracy, while the floating-point

network gives 95.6% accuracy.

12

Thank you
for your attention

	Introduction
	4-bit QNN
	Experiments

