Audio-Visual Predictive Coding for Self-Supervised Visual Representation Learning

Mani Kumar ${ }^{1}$, Michel Valstar ${ }^{1}$, Michael Pound ${ }^{1}$, Timo Giesbrecht ${ }^{2}$
${ }^{1}$ University of Nottingham, ${ }^{2}$ Unilever R\&D Port Sunlight, UK

- Problem Statement: To learn a visual representation function (f_{v}) from unlabeled video data

Directly Supervised Representation Learning

- Labeled Data: $\{\mathrm{X}, Y\}$

$$
\mathrm{X} \xrightarrow{f} Y
$$

Self-Supervised Representation Learning

- Unlabeled Data: $\{\mathrm{X}\}$
\Rightarrow Proxy learning task: $\{\mathrm{X}, \widehat{Y}\}$

$$
x \xrightarrow{\hat{f}} \hat{Y}
$$

Unlabeled Data Points: Intrinsic Correspondences

Data-points as i.i.d (independent and identically distributed) samples

Time (t)

Intrinsic Data-point Correspondences

- Intramodal (Temporal correlations)

Audio-Visual Predictive Coding

Time (t)

Exploiting temporal and crossmodal correspondences jointly

Audio-Visual Permutative Predictive Coding

Contrastive Learning: InfoNCE Loss
(Noise Contrastive Estimation)

$$
\begin{gathered}
I\left(z_{k}^{*} ; c_{k}\right)=\sum_{z_{k}^{*}, c_{k}} p\left(z_{k}^{*}, c_{k}\right) \log \left(\frac{p\left(z_{k}^{*} \mid c_{k}\right)}{p\left(z_{k}^{*}\right)}\right) \\
f_{k}\left(z_{k}^{*}, c_{k}\right) \propto \frac{p\left(z_{k}^{*} \mid c_{k}\right)}{p\left(z_{k}^{*}\right)} \\
f_{k}\left(z_{k}^{*}, c_{k}\right)=\exp \left(z_{k}^{* T} \cdot W \cdot c_{k}\right) \\
L_{i}=-E_{B}\left[\log \frac{f_{k}\left(z_{k}^{*}, c_{k}\right)}{\sum_{z_{j} \in B} f_{k}\left(z_{j}, c_{k}\right)}\right]
\end{gathered}
$$

where B is a mini batch of N samples,

- with 1 positive sample and $\mathrm{N}-1$ negative samples

Summary of Self-Supervised Learning Stage

Visual Encoder
(2D ResNet-34)
Audio Encoder
(1D ResNet-18)

Downstream Evaluation Task: Lip-Reading

Task: Predict the word uttered in a video Dataset: LRW with 500-word class labels Metric: Word Classification Rate (WCR)

Visual Encoder
(2D ResNet-34)

Temporal Model (GRU/Temporal Conv)

Evaluation Protocol: Measure WCR
A. before finetuning the visual encoder
B. after finetuning the visual encoder
A. using the entire train data and
B. using small amounts of train data.

Performance of Different Proxy Tasks on the LipReading Task (Word Classification Rates)

Proxy Task	Using Temporal Conv	Using GRU
AV Synchronization	$50.70(74.17)$	$55.26(76.92)$
Time-Arrow	$52.42(75.80)$	$59.88(78.26)$
AV Correspondence	$56.22(74.23)$	$61.90(77.90)$
Vis. Permutative Pred. Coding	$60.77(77.95)$	$67.62(81.76)$
AudVis. Permutative Pred. Coding (ours)	$\mathbf{7 6 . 4 7}(\mathbf{8 0 . 4 4)}$	$\mathbf{8 0 . 3 0 (8 3 . 1 6)}$

Data-Efficiency Evaluation

- Number of labeled instances
required to learn lip-reading task
- With 1% of train data (10
instances per word class),
- Our method: 38% WCR
- Fully-supervised: 11% WCR

Take-home Idea

A potential approach to unsupervised representation learning:
Leveraging rich intrinsic data-point correspondences

- temporal and cross-modal semantic correlations as natural supervision signals in the self-supervised setting.

Thank You

