

Audio-Visual Predictive Coding for Self-Supervised Visual Representation Learning

Mani Kumar¹, Michel Valstar¹, Michael Pound¹, Timo Giesbrecht²

¹University of Nottingham, ²Unilever R&D Port Sunlight, UK

• Problem Statement: To learn a visual representation function (f_v) from unlabeled video data

Directly Supervised Representation Learning

Labeled Data: { X, Y }

 $X \xrightarrow{f} Y$

Self-Supervised Representation Learning

• Unlabeled Data: {X}

 \Rightarrow Proxy learning task: $\{X, \widehat{Y}\}$

$$x \xrightarrow{\widehat{f}} \widehat{y}$$

Unlabeled Data Points: Intrinsic Correspondences

Data-points as i.i.d (independent and identically distributed) samples

Time (t)

Intrinsic Data-point Correspondences

• Intramodal (Temporal correlations)

Audio-Visual Predictive Coding

Exploiting temporal and crossmodal correspondences jointly

Audio-Visual Permutative Predictive Coding

Permutative predictive coding sub-tasks (Input >Target)

One-to-One (#12 tasks)	One-to-Two (#12 tasks)		
$V_p - V_f$	$V_p \rightarrow (V_f, A_f)$		
$A_p - V_p$	$V_f \rightarrow (V_p, A_p)$		
$A_p - A_f$	$A_p > (V_f, A_f)$		
$V_f - V_p$	$V_f \rightarrow (A_p, A_f)$		
Two-to-One (#12 tasks)	Two to Two (#6 togles)		
1 WO-10-OHC (#12 tasks)	Two-to-Two (#6 tasks)		
$(V_p,A_p) \rightarrow Vf$	$(V_p, V_f) * (A_p, A_f)$		
	, ,		
$(V_p,A_p) \rightarrow Vf$	$(V_p,V_f) \rightarrow (A_p,A_f)$		
$(V_p, A_p) \rightarrow Vf$ $(A_p, A_f) \rightarrow Vp$	$(V_p, V_f) \rightarrow (A_p, A_f)$ $(A_p, A_f) \rightarrow (V_p, V_f)$		
$(V_p, A_p) \rightarrow Vf$ $(A_p, A_f) \rightarrow Vp$	$(V_p, V_f) * (A_p, A_f)$ $(A_p, A_f) * (V_p, V_f)$ $(V_p, A_p) * (V_f, A_f)$		

Permutative predictive coding sub-tasks (Input →Target)

One-to-One (#12 tasks)	One-to-Two (#12 tasks)		
$V_p - V_f$	$V_p \rightarrow (V_f, A_f)$		
$A_p - V_p$	$V_f * (V_p, A_p)$		
A _p ➤ A _f	$A_p \sim (V_f, A_f)$		
V _f ►V _p	$V_f > (A_p, A_f)$		
Two-to-One (#12 tasks)	Two-to-Two (#6 tasks)		
$(V_p,A_p) \rightarrow Vf$	$(V_p,V_f) \rightarrow (A_p,A_f)$		
$(A_p, A_f) \rightarrow Vp$	$(A_p, A_f) \rightarrow (V_p, V_f)$		
$(A_p, V_f) > Af$	$(V_p, A_p) \rightarrow (V_f, A_f)$		
	$(V_f, A_f) \rightarrow (V_p, A_p)$		
	$(V_p,A_f) \rightarrow (A_p,V_f)$		
$(V_f,A_f) \rightarrow V_p$	$(A_p, V_f) \sim (V_p, A_f)$		

Contrastive Learning: InfoNCE Loss

(Noise Contrastive Estimation)

$$I(z_k^*; c_k) = \sum_{z_k^*, c_k} p(z_k^*, c_k) log(\frac{p(z_k^*|c_k)}{p(z_k^*)})$$
$$f_k(z_k^*, c_k) \propto \frac{p(z_k^*|c_k)}{p(z_k^*)}$$
$$f_k(z_k^*, c_k) = exp(z_k^{*T}.W.c_k)$$

$$L_{i} = -E_{B}[log \frac{f_{k}(z_{k}^{*}, c_{k})}{\sum_{z_{j} \in B} f_{k}(z_{j}, c_{k})}]$$

where B is a mini batch of N samples,

 with 1 positive sample and N-1 negative samples

Summary of Self-Supervised Learning Stage

Downstream Evaluation Task: Lip-Reading

Task: Predict the word uttered in a video

Dataset: LRW with 500-word class labels

Metric: Word Classification Rate (WCR)

Temporal Model (GRU/Temporal Conv)

Evaluation Protocol: Measure WCR

- A. before finetuning the visual encoder
- B. after finetuning the visual encoder
 - A. using the entire train data and
 - B. using small amounts of train data.

Performance of Different Proxy Tasks on the Lip-Reading Task (Word Classification Rates)

Proxy Task	Using Temporal Conv	Using GRU
AV Synchronization	50.70 (74.17)	55.26 (76.92)
Time-Arrow	52.42 (75.80)	59.88 (78.26)
AV Correspondence	56.22 (74.23)	61.90 (77.90)
Vis. Permutative Pred. Coding	60.77 (77.95)	67.62 (81.76)
AudVis. Permutative Pred. Coding (ours)	76.47 (80.44)	80.30 (83.16)

Data-Efficiency Evaluation

- Number of labeled instances required to learn lip-reading task
- With 1% of train data (10 instances per word class),
 - Our method: 38% WCR
 - Fully-supervised: 11% WCR

Take-home Idea

A potential approach to unsupervised representation learning:

Leveraging rich intrinsic data-point correspondences

- temporal and cross-modal semantic correlations - as natural supervision signals in the self-supervised setting.

Thank You