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Context
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Iterative Active learning Cycle



Context

3



Motivation
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Iterative Active learning Cycle

Active learning as a way to make informative , diverse and 

balanced selection over unlabelled dataset.



Classical active learning techniques
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1. Clustering based 
approaches


2. Farthest-first traversal


3. CoreSet

Representativeness

1. Uncertainty based:

• Least confidence 

• Margin sampling

• Max entropy 

2. Query-by-committee- 
multiple classifiers


3. Expected model change

- loss gradient

Informativeness
Selection criteria



Proposed Method
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Minority Class Oriented Sampling


1) Selecting samples predicted as minority class


Samples selected for a class:


Motivation: 

if the sample is annotated as minority class :


 help to mitigate imbalance 

else if annotated as majority class  :


help in decision boundary of minority class




Proposed Method

2) Number of samples per class depends on imbalance and budget


For a given class (c), at iterative step (k):         

Average number of class (µk) - Budget / number of classes.

Number of samples in class (c) -
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3) Allows use of any other AF if imbalance is mitigated or if not enough 
minority class samples for found



1) Certainty-oriented Minority Class Sampling


2) Uncertainty-oriented Minority Class Sampling


3)Diversity-oriented Minority Class Sampling


Proposed Method
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Experimental setup
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Initial Budget- 500

Iteration- 15, Total budget - 8000

Model- ResNet18

Training schemes

1. Fine-tuning ResNet18 with thresholding

2. Cost-Sensitive SVM over pre-trained ResNet18 features



Results
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Iterative active learning performance for baselines and for the proposed method DMCS


The AL budget is 8000 and the number of iterations is 15



Results
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Iterative active learning performance for baselines and three variants of the proposed method.


The AL budget is 8000 and the number of iterations is 15. 



Results
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Imbalance Profiles for baselines and three variants of the proposed method.


The AL budget is 8000 and the number of iterations is 15. 
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Performance using CS-SVM and FT-th training schemes compared to SVM and FT.

• SVM training scheme outperforms FT

• Method work over the classical imbalance learning techniques



Discussion
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• Imbalance needs to be treated at the time of sample selection


• Cost-Sensitive SVM over fixed representation acts as a good 
alternative to CNN-FT


• Certainty-oriented Minority Class Sampling provides best 
mitigation to imbalance, while diversity-oriented minority class 
sampling performs best overall



Perspectives
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• Semi-supervised learning- label propagation from source to 


• Domain adaptation/ Universality
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