

DEEP MULTI-STAGE MODEL FOR AUTOMATED LANDMARKING OF CRANIOMAXILLOFACIAL CT SCANS

S. Palazzo, G. Bellitto, L. Prezzavento, F. Rundo, U. Bagci, D. Giordano, R. Leonardi, C. Spampinato

Motivation

Computer tomography (CT) and **cone-beam computer tomography (CBCT)** are the most common imaging modalities for diagnosis and treatment of **craniomaxillofacial (CMF) disorders**.

Motivation

Limitations of automated landmarking:

- Landmarking requires to work at full resolution scale
- Existing models need upstream segmentation to control landmark identification.

Motivation

Limitations of automated landmarking:

- Landmarking requires to work at full resolution scale
- Existing models need upstream segmentation to control landmark identification.

+

 We face this problem through a multi-stage pipeline that first identifies areas where landmarks may be found, on reduced-resolution images, and then refines localization, at full resolution scale.

Landmark Localization

Landmark plane localization

- Localization of the x coordinate for each target landmark
- 3D convolutions
- Output treated as classification volume (maximal activation is selected)
- Full-resolution for *x* axis (512 pixels)
- Shared features among landmarks

Landmark Localization

Landmark region localization

- Localization of a small area on the yz plane around each candidate landmark
- 3D convolutions
- Sequential scanning of slices through LSTMs along the two directions
- Maximal activation in output maps identifies center of target region
- Down-sampled input (128x128x128)
- Shared features

Landmark Localization

Landmark point localization

- Landmark-specific models
- 2D convolutions
- Full-resolution on a reduced area (160x160)
- Output treat as classification map (maximal likelihood pixel denotes yz coordinates)

Performance Evaluation

Datasets used:

- AirwaysSet
 - 19 CT scans of 19 patients.
 - Five landmarks for airways analysis (ANS, PNS, C2sp, C3ai, N), employed to study obstructed sleep apnea syndrome (OSAS)

• Anomymized CBCT scans of 50 patients [1]

• Nine cephalometric landmarks (Me, Gn, Pg, B, Id, CdL, CdR, CorL, CorR) adopted in clinical routine for planning CMF surgery.

Performance Evaluation - Results

Landmark Localization Error (in mm) on AirwaysSet

Baseline: 3D Tiramisu operating at largest possible resolution that fits in a Titan X GPU (128x128x128)

Comparison with state of the art [1] in terms of localization error (in mm).

Note that [1] requires prior segmentation (hard to apply to airways, since landmarks are located in different structures)

	Our model	Baseline
ANS	0.88 ± 0.64	1.49 ± 1.11
C2sp	0.74 ± 0.50	1.01 ± 1.01
C3ai	1.06 ± 0.83	5.80 ± 4.91
Ν	0.57 ± 0.53	1.23 ± 1.48
PNS	1.01 ± 0.56	1.09 ± 0.77
Average	0.85	2.12
	Our model	Torosdogli at a

Performance Evaluation - Results NASION NASION ANS ANS PNS C2sp C3ai C3ai

- +
- We propose a learning-based approach for automated landmarking of CT images that is able to work directly on the input data at its full resolution, employing a multi-stage pipeline
- This leads to an average landmarking error of less of 1 mm on two different CMF structures (mandibles and airways)
- Performance is comparable to the state of the art, without the need of performing a prior segmentation step